Loss of OsMATE6 Function Enhances Drought Resistance Without Yield Penalty by Regulating Stomatal Closure in Rice.

Plant Cell Environ

Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China.

Published: January 2025

Drought is one of the most severe environmental factors limiting plant growth and crop yield, necessitating the identification of genes that enhance drought resistance for crop improvement. Through screening an ethyl methyl sulfonate-mutagenized rice mutant library, we isolated the PEG tolerance mutant 97-1 (ptm97-1), which displays enhanced resistance to osmotic and drought stress, and increased yield under drought conditions. A point mutation in OsMATE6 was identified as being associated with the drought-resistant phenotype of ptm97-1. The role of OsMATE6 in conferring drought resistance was confirmed by additional OsMATE6 knockout mutants. OsMATE6 is expressed in guard cells, shoots and roots and the OsMATE6-GFP fusion protein predominantly localizes to the plasma membrane. Our ABA efflux assays suggest that OsMATE6 functions as an ABA efflux transporter; mutant protoplasts exhibited a slower ABA release rate compared to the wild type. We hypothesize that OsMATE6 regulates ABA levels in guard cells, influencing stomatal closure and enhancing drought resistance. Notably, OsMATE6 knockout mutants demonstrated greater yields under field drought conditions compared to wild-type plants, highlighting OsMATE6 as a promising candidate for improving crop drought resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.15133DOI Listing

Publication Analysis

Top Keywords

drought resistance
20
drought
9
stomatal closure
8
drought conditions
8
osmate6
8
osmate6 knockout
8
knockout mutants
8
guard cells
8
aba efflux
8
resistance
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!