Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ambulatory electrocardiogram (ECG) testing plays a crucial role in the early detection, diagnosis, treatment evaluation, and prevention of cardiovascular diseases. Clear ECG signals are essential for the subsequent analysis of these conditions. However, ECG signals obtained during exercise are susceptible to various noise interferences, including electrode motion artifact, baseline wander, and muscle artifact. These interferences can blur the characteristic ECG waveforms, potentially leading to misjudgment by physicians. To suppress noise in ECG signals more effectively, this paper proposes a novel deep learning-based noise reduction method. This method enhances the diffusion model network by introducing conditional noise, designing a multi-kernel convolutional transformer network structure based on noise prediction, and integrating the diffusion model inverse process to achieve noise reduction. Experiments were conducted on the QT database and MIT-BIH Noise Stress Test Database and compared with the algorithms in other papers to verify the effectiveness of the present method. The results indicate that the proposed method achieves optimal noise reduction performance across both statistical and distance-based evaluation metrics as well as waveform visualization, surpassing eight other state-of-the-art methods. The network proposed in this paper demonstrates stable performance in addressing electrode motion artifact, baseline wander, muscle artifact, and the mixed complex noise of these three types, and it is anticipated to be applied in future noise reduction analysis of clinical dynamic ECG signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0222123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!