AI Article Synopsis

  • Inhibiting Nav1.7 channels is a potential method for creating new pain relief treatments, particularly utilizing peptide toxins from spider venom.
  • A study found that different spider venom peptides effectively inhibited both hNav1.7 and certain potassium (rKv4.2/4.3) channels, but targeted design could improve selectivity for pain relief.
  • The development of a modified peptide, mGpTx1-SA, showed strong pain relief with less effect on rKv4.2/4.3 and reduced heart toxicity, hinting at future advancements in safer analgesic drugs specifically targeting hNav1.7.

Article Abstract

The inhibition of Nav1.7 is a promising strategy for the development of analgesic treatments. Spider venom-derived peptide toxins are recognized as significant sources of Nav1.7 inhibitors. However, their development has been impeded by limited selectivity. In this study, eight peptide toxins from three distinct spider venom Nav channel families demonstrated robust inhibition of hNav1.7, rKv4.2, and rKv4.3 (rKv4.2/4.3) currents, exhibiting a similar mode of action. The analysis of structure and function relationship revealed a significant overlap in the pharmacophore responsible for inhibiting hNav1.7 and rKv4.2 by HNTX-III, although Lys25 seems to play a more pivotal role in the inhibition of rKv4.2/4.3. Pharmacophore-guided rational design is employed for the development of an mGpTx1 analogue, mGpTx1-SA, which retains its inhibition of hNav1.7 while significantly reducing its inhibition of rKv4.2/4.3 and eliminating cardiotoxicity. Moreover, mGpTx1-SA demonstrates potent analgesic effects in both inflammatory and neuropathic pain models, accompanied by an improved in vivo safety profile. The results suggest that off-target inhibition of rKv4.2/4.3 by specific spider peptide toxins targeting hNav1.7 may arise from a conserved binding motif. This insight promises to facilitate the design of hNav1.7-specific analgesics, aimed at minimizing rKv4.2/4.3 inhibition and associated toxicity, thereby enhancing their suitability for therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558128PMC
http://dx.doi.org/10.1002/advs.202406656DOI Listing

Publication Analysis

Top Keywords

peptide toxins
16
inhibition rkv42/43
12
spider venom-derived
8
venom-derived peptide
8
inhibition hnav17
8
hnav17 rkv42
8
inhibition
7
rkv42/43
5
optimizing nav17-targeted
4
nav17-targeted analgesics
4

Similar Publications

Peptide toxins as tools in ion channel biology.

Curr Opin Chem Biol

January 2025

Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India; Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India. Electronic address:

Animal venom contains ion channel-targeting peptide toxins that inflict paralysis or pain. The high specificity and potency of these toxins for their target ion channels provides enticing opportunities for their deployment as tools in channel biology. Mechanistic studies on toxin-mediated ion channel modulation have yielded landmark breakthroughs in our understanding of channel architectures and gating mechanisms.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Aligarh Muslim University, Aligarh, UttarPradesh, India.

Background: Following the genome-wide association studies (GWAS) discovery of microglia-specific genes, particularly Trem-2, SHIP-1, and CD33, significantly associated with higher Alzheimer's disease (AD) risk, the microglia TREM2 pathway has become central for regulating amyloid load, tissue damage, and limiting its spread. These discoveries have opened up the exciting possibility of therapeutic microglia TREM2 manipulation in AD. To date, however, several elements of TREM2 signaling remain unknown, ranging from the temporal activation pattern and receptor-ligand binding to modulation of the brain microenvironment.

View Article and Find Full Text PDF

Background: Multiple AD risk genes are implicated in lipid metabolism, and plasma and brain lipid levels are altered in AD. Astrocytes are enriched in key lipid-related factors and are likely contributors to altered lipid homeostasis in AD. We hypothesize that APP/Aβ-related pathology and neuroimmune factors modulate astrocytic gene transcription that promote maladaptive changes in lipid pathways, including aberrant astrocytic production and release of lipids that could affect Aβ pathology and neuronal deficits.

View Article and Find Full Text PDF

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

The deregulation of immune responses is what causes food allergy (FA) to occur. FA's cause is still unknown. The goal of this study is to investigate the mechanism how the impaired production of IL-10 occurs in peripheral naive B cells of patients with FA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!