Copper-Catalyzed Asymmetric Hydrogenation of Unsymmetrical ortho-Br Substituted Benzophenones.

Angew Chem Int Ed Engl

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.

Published: September 2024

The asymmetric hydrogenation of benzophenones, catalyzed by low-activity earth-abundant metal copper, has hitherto remained a challenge due to the substrates equipped with two indistinguishably similar aryl groups. In this study, we demonstrated that the prochiral carbon of the ortho-bromine substrate exhibits the highest electrophilicity and high reactivity among the ortho-halogen substituted benzophenones, as determined by the Fukui function (f) analysis and hydrogenation reaction. Considering that the enantiodirecting functional bromine group can be easily derivatized and removed in the products, we successfully achieved a green copper-catalyzed asymmetric hydrogenation of ortho-bromine substituted benzophenones. This method yielded a series of chiral benzhydrols with excellent results. The utility of this protocol has been validated through a gram-scale reaction and subsequent product transformations. Independent gradient model based on Hirshfeld partition (IGMH) and energy decomposition analysis (EDA) indicate that the CH⋅⋅⋅HC multiple attractive dispersion interactions (MADI) effect between the catalyst and substrate enhances the catalyst's activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202416313DOI Listing

Publication Analysis

Top Keywords

asymmetric hydrogenation
12
substituted benzophenones
12
copper-catalyzed asymmetric
8
hydrogenation
4
hydrogenation unsymmetrical
4
unsymmetrical ortho-br
4
ortho-br substituted
4
benzophenones
4
benzophenones asymmetric
4
hydrogenation benzophenones
4

Similar Publications

Photoinduced Regiodivergent and Enantioselective Cross-Coupling of Glycine Derivatives with Hydrocarbon Feedstocks.

J Am Chem Soc

January 2025

Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.

Regiodivergent asymmetric synthesis represents a transformative strategy for the efficient generation of structurally diverse chiral products from a single set of starting materials, significantly enriching their enantiomeric composition. However, the design of radical-mediated regiodivergent and enantioselective reactions that can accommodate a wide range of functional groups and substrates has posed significant challenges. The obstacles primarily lie in switching the regioselectivity and achieving high enantiodiscrimination, especially when dealing with high-energy intermediates.

View Article and Find Full Text PDF

Neutral dual hydrogen bond donors (HBDs) are effective catalysts that enhance the electrophilicity of substrates or the Lewis/Brønsted acidity of reagents through an anion-binding mechanism. Despite their success in various enantioselective organocatalytic reactions, their application to transition metal catalysis remains rare. Herein, we report the activation of gold(I) precatalysts by chiral ureas, leading to enantioselective hydroarylation of allenes with indoles.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

Total syntheses of the parvistemoline alkaloids enabled by stereocontrolled Ir/Pd-catalyzed allylic alkylation.

Nat Commun

December 2024

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.

The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs.

View Article and Find Full Text PDF

The convergent total synthesis of ixabepilone and its analogues in a 13-step longest linear sequence is reported. The crucial chiral centers at challenging C3-O, C8-C and C15-N positions on the scaffold of the ixabepilone were installed via highly efficient asymmetric hydrogenations (up to 95% yield and up to 99% e.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!