Lithium-ion batteries (LIBs) that can be charged faster while delivering high capacity are currently in significant demand, especially for electric vehicle applications. In this context, this study introduces a less-explored subject: nitrogen and oxygen dual-doped carbons derived from bio-based copolymers, specifically poly(benzimidazole--amide). The synthesis involved varying proportions of benzimidazole to amide, namely, 8.5 : 1.5, 7 : 3, and 5 : 5. The copolymers were pyrolyzed under a nitrogen atmosphere to obtain co-doped carbons, wherein the copolymers acted as single sources of carbon, nitrogen, and oxygen, with the nitrogen content ranging between 12.1 and 8.0 at% and oxygen doping between 11.8 and 25.0 at%, and were named as pyrolyzed polybenzimidazole--amide 8.5-1.5, 7-3, and 5-5. Coin cells were fabricated and rate studies were conducted for all three samples, wherein PYPBIPA8.5-1.5 outperformed all others, especially at higher current densities. Intrigued by these interesting results, when long-cycling studies were performed at a high current density of 4.0 A g, pyrolysed polybenzimidazole--amide 8.5-1.5 showed a delithiation capacity of 135 mA h g compared to pyrolysed polybenzimidazole--amide 7-3 and 5-5 with a delithiation capacity of 100 mA h g and 60 mA h g, respectively, with a capacity retention of 90% even after 3000 cycles. Furthermore, a full cell (2025-coin cell) was fabricated using the PYPBIPA8.5-1.5 anode and LiNi CoAlO (LiNCAO) cathode.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376043PMC
http://dx.doi.org/10.1039/d4na00416gDOI Listing

Publication Analysis

Top Keywords

co-doped carbons
8
lithium-ion batteries
8
nitrogen oxygen
8
polybenzimidazole--amide 85-15
8
7-3 5-5
8
pyrolysed polybenzimidazole--amide
8
delithiation capacity
8
bio-based polybenzimidazole--amide-derived
4
polybenzimidazole--amide-derived co-doped
4
carbons fast-charging
4

Similar Publications

Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.

View Article and Find Full Text PDF

[Simultaneous Removal of Antibiotic-resistant Bacteria, Genes, and Inhibition of Horizontal Transfer using Vis-rGO-CNCF-enhanced Peroxymonosulfate Activation Process].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200082, China.

As emerging contaminants, antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) pose a serious threat to human health and ecological security. Here, a reduced graphene oxide and g-CN co-doped copper ferrite (rGO-CNCF) were synthesized. The composite material was characterized using XRD, FTIR, XPS, SEM-EDS, TEM, and DRS analysis methods, and a visible-light-assisted rGO-CNCF-activated PMS system was constructed for the removal of ARB and ARGs in water.

View Article and Find Full Text PDF

Ionic liquid assisted construction of synergistic modulated multiphase hybrid composites for boosting electrochemical energy storage.

J Colloid Interface Sci

December 2024

College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China. Electronic address:

The unique structure and strong interaction of multiphase hybrid materials have garnered significant attention as prospective candidates for electrode materials in the realm of energy storage. The present study presents a rational design of a functional NiSe-CoSe/N, B double-doped carbon hybrid composite (NCS/C), resulting in the emergence of various novel cooperative regulatory mechanisms involving: (i) the heterogeneous structure of NiSe and CoSe generates built-in electric fields to increase electron mobility; (ii) the incorporation of polyatomic double-doped carbon (N, and B) expedites electron transfer rate; intriguingly, (iii) ionic liquids not only serve as polyatomic dopants in the reaction system but also influence the microstructure of the composite. Benefiting from these synergistic effects, the NCS/C hybrid exhibits remarkable charge storage capacity and rapid electrochemical kinetics, driven by its multi-fold hollow structure and multicomponent cooperative modulation.

View Article and Find Full Text PDF

Spherical Mg/Cu Co-Doped NaFe(PO)PO Cathode Materials with Mitigated Diffusion-Induced Stresses and Enhanced Cyclic Stability.

Angew Chem Int Ed Engl

December 2024

Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China.

NaFe(PO)PO (NFPP) has been regarded as the promising cathode material for sodium-ion batteries (SIBs). However, the practical applications of NFPP are hindered by its high-volume changes, poor intrinsic electron conductivity and sluggish Na+ ions diffusion kinetics. Herein, a spray-drying and solid-state reaction method have been utilized to fabricate the spherical trace amount Mg/Cu co-doped NaFe(PO)PO (NFMCPP).

View Article and Find Full Text PDF

Bovine serum albumin (BSA) is one of the most abundant proteins in serum, and its high-throughput detection is still one of the current challenges. Nitrogen‑phosphorus co-doped carbon dots (CDs) were synthesized by a hydrothermal method. Adenosine monophosphate (AMP) was used as a precursor for the synthesis of CDs, providing the required carbon, nitrogen and phosphorus sources for the CDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!