Expression and characterization of recombinant antibodies against H7 subtype avian influenza virus and their diagnostic potential.

Front Microbiol

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Published: August 2024

AI Article Synopsis

  • * In this study, researchers sequenced and analyzed two mAbs against H7 avian influenza viruses, cloning their DNA into expression vectors and producing them in stable cell lines derived from CHO-S cells.
  • * The recombinant antibodies demonstrated comparable efficacy to traditional animal-derived mAbs and highlight a method that could reduce animal usage in mAb production, supporting better animal welfare practices.

Article Abstract

Introduction: Monoclonal antibodies (mAbs) play a pivotal role in disease diagnosis as well as immunotherapy interventions. Traditional monoclonal antibody generation relies on animal immunization procedures predominantly involving mice; however, recent advances in expression methodologies have enabled large-scale production suitable for both industrial applications as well as scientific investigations.

Methods: In this study, two mAbs against H7 subtype avian influenza viruses (AIV) were sequenced and analyzed, and the DNA sequences encoding heavy chain (HC) and light chain (LC) were obtained and cloned into pCHO-1.0 expression vector. Then, the HC and LC expression plasmids were transfected into CHO-S cells to establish stable cell lines expressing these mAbs using a two-phase selection scheme with different concentrations of methotrexate and puromycin. Recombinant antibodies were purified from the cell culture medium, and their potential applications were evaluated using hemagglutination inhibition (HI), western blotting (WB), confocal microscopy, and enzyme-linked immunosorbent assay (ELISA).

Results: The results indicated that the obtained recombinant antibodies exhibited biological activity similar to that of the parent antibodies derived from ascites and could be used as a replacement for animal-derived mAbs. A kinetic analysis of the two antibodies to the AIV HA protein, conducted using surface plasmon resonance (SPR), showed concordance between the recombinant and parental antibodies.

Discussion: The data presented in this study suggest that the described antibody production protocol could avoid the use of experimental animals and better conform to animal welfare regulations, and provides a basis for further research and development of mAbs-based diagnostic products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377330PMC
http://dx.doi.org/10.3389/fmicb.2024.1459402DOI Listing

Publication Analysis

Top Keywords

recombinant antibodies
12
subtype avian
8
avian influenza
8
antibodies
6
expression
4
expression characterization
4
recombinant
4
characterization recombinant
4
antibodies subtype
4
influenza virus
4

Similar Publications

Botulinum neurotoxin, produced by the bacterium Clostridium botulinum, causes botulism, a severe, rapidly progressing, and potentially fatal condition. Swift detection of the toxin and timely administration of antitoxin antibodies are critical for effective treatment. The current standard for Botulinum toxin testing is the mouse lethality assay, but this method is time-consuming and requires live animals.

View Article and Find Full Text PDF

Unlabelled: Neuraminidase (NA)-specific antibodies contribute to immunity against influenza. While studies have demonstrated increased NA inhibiting (NAI) antibody titers after vaccination with egg-derived inactivated influenza vaccines (eIIV), the response to cell culture-derived (c) IIV has not been reported.

Methods: An immunogenicity sub-study was performed within a clinical trial comparing the effectiveness of egg, cell, and recombinant hemagglutinin (HA)-derived influenza vaccines during the 2018-2019 and 2019-2020 influenza seasons.

View Article and Find Full Text PDF

SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19.

View Article and Find Full Text PDF

Background: With insight into the elevated levels of phosphorylation of diseased tau, it is believed that specific modifications occur in a time-dependent manner that contribute to tau's role in Alzheimer's disease pathogenesis and progression. Present methods to obtain phospho-tau (p-tau) from post-mortem tissue or recombinantly are insufficient to answer the foremost questions in the field, and there is currently no way to study each disease-relevant modification reproducibly or in isolation. To this point, learning about tau phosphorylation at the resolution of a single modification has been a major obstacle in clarifying whether certain sites are causative of disease or just a by-product of other harmful mechanisms.

View Article and Find Full Text PDF

Background: The direct and chaperone-associated interactions of E3 ubiquitin ligase CHIP with tau in Alzheimer's disease and other tauopathies, regulates tau turnover, by directly linking it to ubiquitination and proteasomal degradation, as well as through suppression of tau aggregation. Modulation of these CHIP-driven tau clearance mechanisms can be an effective treatment strategy. Antigen-binding antibody fragments (Fabs) are potent tools that can highly-selectively engage target proteins and act as functional probes or inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!