The rhizosphere, the soil region influenced by plant roots, represents a dynamic microenvironment where intricate interactions between plants and microorganisms shape soil health, nutrient cycling, and plant growth. Soil microorganisms are integral players in the transformation of materials, the dynamics of energy flows, and the intricate cycles of biogeochemistry. Considerable research has been dedicated to investigating the abundance, diversity, and intricacies of interactions among different microbes, as well as the relationships between plants and microbes present in the rhizosphere. Metagenomics, a powerful suite of techniques, has emerged as a transformative tool for dissecting the genetic repertoire of complex microbial communities inhabiting the rhizosphere. The review systematically navigates through various metagenomic approaches, ranging from shotgun metagenomics, enabling unbiased analysis of entire microbial genomes, to targeted sequencing of the 16S rRNA gene for taxonomic profiling. Each approach's strengths and limitations are critically evaluated, providing researchers with a nuanced understanding of their applicability in different research contexts. A central focus of the review lies in the practical applications of rhizosphere metagenomics in various fields including agriculture. By decoding the genomic content of rhizospheric microbes, researchers gain insights into their functional roles in nutrient acquisition, disease suppression, and overall plant health. The review also addresses the broader implications of metagenomic studies in advancing our understanding of microbial diversity and community dynamics in the rhizosphere. It serves as a comprehensive guide for researchers, agronomists, and policymakers, offering a roadmap for harnessing metagenomic approaches to unlock the full potential of the rhizosphere microbiome in promoting sustainable agriculture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379838 | PMC |
http://dx.doi.org/10.1007/s13205-024-04065-9 | DOI Listing |
Front Parasitol
August 2024
Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya, Sri Lanka.
Dirofilariasis, caused by the nematode spp., poses significant challenges in diagnosis due to its diverse clinical manifestations and complex life cycle. This comprehensive literature review focuses on the evolution of diagnostic methodologies, spanning from traditional morphological analyses to modern emerging techniques in the context of dirofilariasis diagnosis.
View Article and Find Full Text PDFJ Clin Exp Hepatol
December 2024
Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
Post-Kasai portoenterostomy (KPE) cholangitis is one of the most common complications that has a negative impact on liver function and native liver survival. Early diagnosis and judicious empiric antimicrobial management are, therefore, important to prevent further liver damage and decompensation. However, there is no consensus regarding the standard definition of post-KPE cholangitis, and established guidelines on evaluation and management are also lacking.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, 21565, Republic of Korea.
Motivation: Microbiota-derived metabolites significantly impact host biology, prompting extensive research on metabolic shifts linked to the microbiota. Recent studies have explored both direct metabolite analyses and computational tools for inferring metabolic functions from microbial shotgun metagenome data. However, no existing tool specifically focuses on predicting changes in individual metabolite levels, as opposed to metabolic pathway activities, based on shotgun metagenome data.
View Article and Find Full Text PDFEnviron Int
January 2025
School of Environmental & Natural Sciences, Bangor University, Bangor LL57 2UW, UK; Verily Life Sciences LLC., South San Francisco, CA 94080, United States.
With 40 million annual passenger flights, airports are key hubs for microbial communities from diverse geographic origins to converge, mix, and distribute. Wastewater derived from airports and aircraft represent both a potential route for the global dispersion of antimicrobial resistant (AMR) organisms and an under-utilised resource for strengthening global AMR surveillance. This study investigates the abundance and diversity of antimicrobial resistance genes (ARGs) in wastewater samples collected from airport terminals (n = 132), aircraft (n = 25), and a connected wastewater treatment plant (n = 11) at three international airports in the UK (London Heathrow, Edinburgh and Bristol).
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-900, Brazil.
Despite meticulous precautions, contamination of genomic DNA samples is not uncommon, which can significantly compromise the analysis of microorganisms' whole-genome sequencing data, thus affecting all subsequent analyses. Thanks to advancements in software and bioinformatics techniques, it is now possible to address this issue and prevent the loss of the entire dataset obtained in a contaminated whole-genome sequencing, where the DNA of another bacterium is present. In this study, it was observed that the sequencing reads from Streptomyces sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!