Ettringite is an important mineral that contributes to the overall performance of cementitious materials. Knowledge of the surface charge behaviour of a solid is necessary for a mechanistic description of surface processes such as adsorption or particle-particle interactions. The objective of this study was to develop a model capable of reproducing ettringite surface charge as a function of calcium, sulphate, and pH. Ettringite was synthesised and characterised using different analytical, microscopic, and spectroscopic techniques with the help of density functional theory. Electrophoretic mobility was measured using laser Doppler electrophoresis in alkaline waters representative of the cementitious environment. The behaviour of the ettringite surface charge was shown to be quite complex as sulphate and calcium acted in a competitive manner on the overall charge. The ζ-potential increases when the calcium content increases, whereas it decreases when sulphate increases. This is due to the possible adsorption of these ions at the surface, and the extent of the effect depends on the relative concentrations of Ca and SO . An electrostatic double layer model (DLM) was used to calculate the surface potential, considering the adsorption of both calcium and sulphate, as possible ions determining the potential (IDP), and formation of different complexes with ettringite surface functional groups (SOH). The variations of the ζ-potential could be satisfactorily predicted under the different chemical conditions of interest in a cementitious environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378879 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e36117 | DOI Listing |
ACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.
The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
Gradient porous carbon has become a potential electrode material for energy storage devices, including the aqueous zinc-ion hybrid capacitor (ZIHC). Compared with the sufficient studies on the fabrication of ZIHCs with high electrochemical performance, there is still lack of in-depth understanding of the underlying mechanisms of gradient porous structure for energy storage, especially the synergistic effect of ultramicropores (<1 nm) and micropores (1-2 nm). Here, we report a design principle for the gradient porous carbon structure used for ZIHC based on the data-mining machine learning (ML) method.
View Article and Find Full Text PDFACS Nano
January 2025
Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
Glioblastoma multiforme (GBM), particularly the deep-seated tumor where surgical removal is not feasible, poses great challenges for clinical treatments due to complicated biological barriers and the risk of damaging healthy brain tissue. Here, we hierarchically engineer a self-adaptive nanoplatform (SAN) that overcomes delivery barriers by dynamically adjusting its structure, surface charge, particle size, and targeting moieties to precisely distinguish between tumor and parenchyma cells. We further devise a AN-uided ntuitive and recision ntervention (SGIPi) strategy which obviates the need for sophisticated facilities, skilled operations, and real-time magnetic resonance imaging (MRI) guidance required by current MRI-guided laser or ultrasound interventions.
View Article and Find Full Text PDFNat Mater
January 2025
School of Physics and Astronomy, Beijing Normal University, Beijing, China.
The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.
View Article and Find Full Text PDFSci Rep
January 2025
Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, SyMMES, Grenoble, F-38000, SyMMES, France.
Pigment particles used in tattooing may exert long terms effect by releasing diffusible degradation products. In the present work, aqueous suspensions of the organic orange diazo pigment PO13 were aged by exposure to simulated sunlight at 40 °C. The morphology and the surface charge of PO13 particles were barely modified upon aging, but primary particles were released by de-agglomeration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!