Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Side impact crashes are one of the most dangerous impact scenarios that a child can suffer. Studies by the National Highway Traffic Safety Administration (NHTSA) have shown that the head and Thorax regions are affected severely. The objective of this work is to perform a numerical evaluation of the oblique pole-side test considering the FMVSS 214-P standard to estimate the Head, Neck, and Thorax injuries for a six-year-old child positioned in the rear seat without any Child Restraint System, two configurations were performed for the oblique pole-side impact: a nearside and a far-side positioning configuration. A six-year-old Human Body Model (HBM) denominated Scalable PIPER Child Model, and the Ford Explorer 2003 were used to perform the test in the LS DYNA® software to assess the biomechanics involved in the crash scenarios. The approach considered a comparative case study with the baseline of the six-year-old child PIPER model to ensure that the positioning adjustment has not affected the mesh quality and interior components for the PIPER child model. The outcomes obtained in case 1 show that the modified PIPER child model has slight outcomes at the shoulder and pelvis zone due to the differences in the body positioning and not by the mesh or the interior interaction between the components. The outcomes obtained in case 2 reflect that the nearside setup obtained the higher measurements for the child occupant. The for Head at nearside test to overcome the Side Criteria established by the Assessment Protocol Child Occupant Protection by Euro NCAP, the kinematics behavior demonstrates the importance of researching children in side crashes to enhance child security, especially in the oblique pole side impact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378957 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e35927 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!