Advancements in Surfactant Carriers for Enhanced Oil Recovery: Mechanisms, Challenges, and Opportunities.

ACS Omega

Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil.

Published: September 2024

Enhanced oil recovery (EOR) techniques are crucial for maximizing the extraction of residual oil from mature reservoirs. This review explores the latest advancements in surfactant carriers for EOR, focusing on their mechanisms, challenges, and opportunities. We delve into the role of inorganic nanoparticles, carbon materials, polymers and polymeric surfactants, and supramolecular systems, highlighting their interactions with reservoir rocks and their potential to improve oil recovery rates. The discussion includes the formulation and behavior of nanofluids, the impact of surfactant adsorption on different rock types, and innovative approaches using environmentally friendly materials. Notably, the use of metal oxide nanoparticles, carbon nanotubes, graphene derivatives, and polymeric surfacants and the development of supramolecular complexes for managing surfacant delivery are examined. We address the need for further research to optimize these technologies and overcome current limitations, emphasizing the importance of sustainable and economically viable EOR methods. This review aims to provide a comprehensive understanding of the emerging trends and future directions in surfactant carriers for EOR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375729PMC
http://dx.doi.org/10.1021/acsomega.4c04058DOI Listing

Publication Analysis

Top Keywords

surfactant carriers
12
oil recovery
12
advancements surfactant
8
enhanced oil
8
mechanisms challenges
8
challenges opportunities
8
carriers eor
8
nanoparticles carbon
8
carriers enhanced
4
oil
4

Similar Publications

FA-PEG Modified ZIF(Mn) Nanoparticles Loaded with Baicalin for Imaging-Guided Treatment of Melanoma in Mice.

Int J Nanomedicine

December 2024

Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261031, People's Republic of China.

Background: Melanoma is an aggressive skin tumor with limited therapeutic options due to rapid proliferation, early metastasis, and poor prognosis. Baicalin (BA), a natural flavonoid, shows promise in inducing ferroptosis and apoptosis but faces challenges of poor solubility and bioavailability. To address these issues, we developed a multifunctional drug delivery system: manganese-doped ZIF-8 nanoparticles (ZIF(Mn)) loaded with BA and modified with folic acid (FA) and polyethylene glycol (PEG).

View Article and Find Full Text PDF

Organic photovoltaic materials typically exhibit low charge separation and transfer efficiency and severe exciton/carrier recombination due to high exciton binding energy and short exciton diffusion lengths, limiting the enhancement of photocatalytic hydrogen evolution performance. Here, we introduce a surface charge reversal strategy to regulate charge characters of organic photovoltaic catalyst (OPC). Compared to OPC nanoparticles (NPs) stabilized by anionic surfactant ((-) NPs), NPs stabilized by cationic surfactant ((+) NPs) exhibit a raised Fermi level, larger surface band bending and Schottky barrier, thereby enhancing charge separation and transfer efficiency while suppressing charge carrier recombination.

View Article and Find Full Text PDF

Glycyrrhetinic acid (GA) possesses various pharmacological effects, including anti-inflammatory, anti-tumor, and anti-viral properties. However, its clinical application is limited by poor solubility and low oral bioavailability. Polymers play a crucial role in pharmaceutical formulations, particularly as matrices in excipients to enhance the solubility, bioavailability, and stability of active pharmaceutical ingredients.

View Article and Find Full Text PDF

Hydrophobic modification of cellulose nanofibers/bionic flower-like ZnO synergistically stabilized Pickering emulsion to enhance pesticide deposition.

Int J Biol Macromol

December 2024

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Environmental issues arising from the low pesticide utilization rate make the development of environmentally friendly and low-cost pesticide carrier systems an urgent problem to be solved. Pickering emulsion systems have shown broad application prospects in pesticide delivery. In this study, dodecenyl succinic anhydride (DDSA) was used to hydrophobically modify cellulose nanofiber (D-CNF), and biomimetic flower-like zinc oxide (ZnO) particles were prepared by precipitation method at room temperature.

View Article and Find Full Text PDF

Free radical polymerization technique was used to formulate Poloxamer-188 based hydrogels for controlled delivery. A total of seven formulations were formulated with varying concentrations of polymer, monomer ad cross linker. In order to assess the structural properties of the formulated hydrogels, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM), and X-ray diffraction (XRD) were carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!