Global regulatory trends of genome editing technology in agriculture and food.

Breed Sci

Graduate School of Public Policy, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.

Published: March 2024

There is a need to introduce new regulations regarding genome editing technology and its application to agriculture and food. Regulations are different among countries and sometimes inconsistent. Here, we summarize the current regulations regarding the use of genome editing technology in agriculture and food in various countries around the world. We also discuss the main regulatory developments expected to occur in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375430PMC
http://dx.doi.org/10.1270/jsbbs.23046DOI Listing

Publication Analysis

Top Keywords

genome editing
12
editing technology
12
agriculture food
12
technology agriculture
8
regulations genome
8
global regulatory
4
regulatory trends
4
trends genome
4
food introduce
4
introduce regulations
4

Similar Publications

Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in .

Bioengineered

December 2025

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.

Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.

View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

[Gene editing is changing the treatment of hereditary diseases].

Lakartidningen

January 2025

docent, verksamhetschef, Karolinska centrum för cellterapi (KCC), Karolinska universitetssjukhuset, Stockholm; Karolins-ka ATMP-centrum; institutionen för laboratorie-medicin, Karolinska institutet.

Gene editing is a novel technology within gene therapy, which changes sequences in chromosomal DNA with precision. Even if there are alternative strategies, the Nobel Prize-winning CRISPR/Cas technology has become the dominating principle. During recent years base editing and prime editing, permitting editing without DNA double-strand breaks, have been developed.

View Article and Find Full Text PDF

Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics.

Mol Pharm

January 2025

ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China.

Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy.

View Article and Find Full Text PDF

Revisiting the female germline cell development.

Front Plant Sci

January 2025

College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.

The formation of the female germline is the fundamental process in most flowering plants' sexual reproduction. In , only one somatic cell obtains the female germline fate, and this process is regulated by different pathways. Megaspore mother cell (MMC) is the first female germline, and understanding MMC development is essential for comprehending the complex mechanisms of plant reproduction processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!