The pancreatic tumor microenvironment presents multiple obstacles for polymer-based drug delivery systems, limiting tumor penetration and treatment efficacy. Here, we engineer a hyaluronidase/reactive oxygen species cascade-responsive size/charge bidirectional-tunable nanodelivery (btND, G/R@TKP/HA) for co-delivery of gemcitabine and KRAS siRNA, capable of navigating through tumor barriers and augmenting anticancer efficiency. When penetrating the tumor stroma barrier, the hyaluronic acid shell of the nanodelivery undergoes degradation by hyaluronidase in an extracellular matrix, triggering size tuning from large to small and charge tuning from negative to positive, thereby facilitating deeper penetration and cellular internalization. After endocytosis, the nanodelivery protonizes in the endo/lysosome, prompting rapid endo/lysosomal escape, effectively overcoming the lysosome barrier. Intracellular ROS further disrupt the nanodelivery, inducing its size tuning again from small to large and a positive charge decrease for high tumor retention and controlled drug release. The btND shows remarkable antitumor activity in pancreatic cancer mouse models, highlighting the efficacy of this approach in penetrating tumor barriers and enhancing anticancer outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376368 | PMC |
http://dx.doi.org/10.1039/d4sc04782f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!