AI Article Synopsis

  • The study explores how different ways to attach molecular catalysts affect their performance in electrocatalytic CO reduction reactions (eCORR).
  • The graphite-conjugated Ni phthalocyanine catalyst (Ni(NH)Pc-GC) shows impressive electrocatalytic activity and stability in both H-type and flow cells.
  • Strong electronic coupling from graphite increases the catalyst's efficiency by enhancing electron density and lowering energy barriers, which could lead to advancements in catalytic technology.

Similar Publications

The replacement of the thermodynamically unfavorable anodic oxygen evolution reaction (OER) with a more favorable organic oxidation reaction, such as the anodic oxidation of benzylamine, has garnered significant interest in hybrid water electrolyzer cells. This approach promises the production of value-added chemicals alongside hydrogen fuel generation, improving overall energy efficiency. However, achieving high current density for benzylamine oxidation without interference from OER remains a challenge, limiting the practical efficiency of the electrolyzer cell.

View Article and Find Full Text PDF

Single Precursor-Derived Sub-1 nm MoCo Bimetallic Particles Decorated on Phosphide-Carbon Nitride Framework for Sustainable Hydrogen Generation.

ACS Appl Mater Interfaces

January 2025

Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.

The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.

View Article and Find Full Text PDF

Screened Ni single-cluster catalyst supported on graphidyne for high-performance electrocatalytic NO reduction to NH: A computational study.

J Colloid Interface Sci

January 2025

Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China. Electronic address:

Electrocatalytic NO reduction (NORR) to NH represents a promising approach for converting hazardous NO waste gases into high-value NH products under ambient conditions. However, exploring stable, low-cost, and highly efficient catalysts to enhance the NO-to-NH conversion process remains a significant challenge. Herein, through systematic computational studies based on density functional theory (DFT), we rationally designed transition metal triatomic cluster supported on graphdiyne (TM/GDY) as potential single-cluster catalysts for high-performance NORR.

View Article and Find Full Text PDF

Synergistic Atomic Environment Optimization of Nickel-Iron Dual Sites by Co Doping and Cr Vacancy for Electrocatalytic Oxygen Evolution.

J Am Chem Soc

January 2025

School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China.

The dual-site synergistic catalytic mechanism on NiFeOOH suggests weak adsorption of Ni sites and strong adsorption of Fe sites limited its activity toward alkaline oxygen evolution reaction (OER). Large-scale density functional theory (DFT) calculations confirm that Co doping can increase Ni adsorption, while the metal vacancy can reduce Fe adsorption. The combined two factors can further modulate the atomic environment and optimize the free energy toward oxygen-containing intermediates, thus enhancing the OER activity.

View Article and Find Full Text PDF

Electrochemical nitrate reduction reaction (NO3RR) offers a promising technology for the synthesis of ammonia (NH3) and removal of nitrate in wastewater. Herin, we fabricate a series of Fe3C nanoparticles in controllable pyridinic-N doped graphene (Fe3C@NG-X) by a self-sacrificing template method for the NO3RR. Fe3C@NG-10 exhibits high catalytic performance with a Faradaic efficiency (FE) of 94.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!