The nuclear pore complex (NPC) plays imperative biological and biomedical roles as the sole gateway for molecular transport between the cytoplasm and nucleus of eukaryotic cells. The proteinous nanopore, however, can be blocked by arginine-containing polydipeptide repeats (DPRs) of proteins resulting from the disordered C9orf72 gene as a potential cause of serious neurological diseases. Herein, we report the new application of transient scanning electrochemical microscopy (SECM) to quantitatively characterize DPR-NPC interactions for the first time. Twenty repeats of neurotoxic glycine-arginine and proline-arginine in the NPC are quantified to match the number of phenylalanine-glycine (FG) units in hydrophobic transport barriers of the nanopore. The 1 : 1 stoichiometry supports the hypothesis that the guanidinium residue of a DPR molecule engages in cation-π interactions with the aromatic residue of an FG unit. Cation-π interactions, however, are too weak to account for the measured free energy of DPR transfer from water into the NPC. The DPR transfer is thermodynamically as favorable as the transfer of nuclear transport receptors, which is attributed to hydrophobic interactions as hypothesized generally for NPC-mediated macromolecular transport. Kinetically, the DPRs are trapped by FG units for much longer than the physiological receptors, thereby blocking the nanopore. Significantly, the novel mechanism of toxicity implies that the efficient and safe nuclear import of genetic therapeutics requires strong association with and fast dissociation from the NPC. Moreover, this work demonstrates the unexplored power of transient SECM to determine the thermodynamics and kinetics of biological membrane-molecule interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375788 | PMC |
http://dx.doi.org/10.1039/d4sc05063k | DOI Listing |
Discov Nano
January 2025
Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.
View Article and Find Full Text PDFClin Kidney J
January 2025
Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy, Beijing, China.
Nucleoporins, as major components of nuclear pore complex, have been recently discovered to participate in organ development. Here, we report a young female patient with nephrotic proteinuria resistant to immune suppressant treatment and congenital ovarian insufficiency. Renal pathology confirmed focal segmental glomerulosclerosis and whole-exome sequencing revealed compound heterozygous mutations in Nucleoporin 160 (), NM_015231.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KU Leuven, Materials engineering, Kasteelpark Arenberg 44 bus 2450, 3001 LEUVEN Belgium, LEUVEN, BELGIUM.
Traditional polymer solid electrolytes (PSEs) suffer from low Li conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ion transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS-NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ion conductivity that increases and then decreases as macropore proportion rises.
View Article and Find Full Text PDFACS Omega
January 2025
School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Hot dry rock (HDR) geothermal development faces challenges due to the difficulty of stimulating fluid flow and heat-exchange fracture channels within deep, low-porosity, and low-permeability reservoirs. A liquid nitrogen cyclic cold shock method was proposed, using liquid nitrogen as a fracturing fluid. The large temperature difference between the liquid nitrogen and the hot rock induces thermal stress, forming a complex pore-fracture network.
View Article and Find Full Text PDFNucleus
December 2025
Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA.
The vascular network, uniquely sensitive to mechanical changes, translates biophysical forces into biochemical signals for vessel function. This process relies on the cell's architectural integrity, enabling uniform responses to physical stimuli. Recently, the nuclear envelope (NE) has emerged as a key regulator of vascular cell function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!