2,4-Thiazolidinedione derivatives represent nitrogen-containing heterocyclic compounds utilized in type 2 diabetes mellitus management. Recent advances in medicinal chemistry have unveiled diverse therapeutic potentials and structural modifications of these derivatives. This review delves into novel TZD derivatives, encompassing their synthesis, structure-activity relationships, and pharmacokinetic profiles. Various therapeutic potentials of TZDs are explored, including anticancer, antimicrobial, anti-inflammatory, antioxidant, anticonvulsant, antihyperlipidemic, anticorrosive, and antitubercular activities. Additionally, it addresses mitigating side effects associated with marketed TZD derivatives such as weight gain, oedema, fractures, and congestive heart failure in type 2 diabetes mellitus management. The review elaborates on in vivo, in vitro, and ex vivo studies supporting different biological activities, alongside predicting ADME and drug-likeness properties of TZDs. Computational studies are also integrated to elucidate binding modes and affinities of novel TZD derivatives. Furthermore, a plethora of novel TZD derivatives with varied and enhanced therapeutic potentials are presented, warranting further evaluation of their biological activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564877 | PMC |
http://dx.doi.org/10.1002/open.202400147 | DOI Listing |
ChemistryOpen
January 2025
Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran.
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2025
Department of Organic Chemistry, Medical University of Lublin, Lublin, Poland.
The ever-increasing drug-resistant tuberculosis (TB) has invigorated the focus on the discovery and development of novel therapeutic agents and treatment options. Thiazolidinone-based compounds have shown good antitubercular properties . Here, we report the design and synthesis of a number of new derivatives inspired by the structure of thiazolidine-2,4-dione (TZD).
View Article and Find Full Text PDFJ Infect Chemother
December 2024
Department of Infection Prevention and Control, Aichi Medical University Hospital, Nagakute, Aichi, Japan; Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Nagakute, Aichi, Japan. Electronic address:
Thrombocytopenia derived from tedizolid (TZD) has been reported but less frequently than that from linezolid. Only a few reports have investigated the relationship between the efficacy and safety of TZD administration. This study aimed to measure TZD concentration and investigate the relationship between efficacy and safety.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824236, India.
Thiazolidinedione derivatives have shown significant potential as targeted cancer therapies by leveraging their various mechanisms of action. These include suppressing cell proliferation, triggering apoptosis, and influencing signaling pathways associated with tumor development. Their multifaceted effects make them promising candidates for advancing cancer treatment strategies.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China. Electronic address:
Ergosterol peroxide (EP) is a steroidal compound isolated from the traditional Chinese medicine Ganoderma lucidum. However, EP is limited by its solubility and moderate potency in antitumor studies. In the present study, a series of novel ergosterol peroxide-3-thiazolidinedione derivatives were designed and synthesized, by changing the linker between ergosterol peroxide and thiazolidinedione, it is expected to obtain compounds with better antitumor activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!