A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biogenesis of circRBM33 mediated by N6-methyladenosine and its function in abdominal aortic aneurysm. | LitMetric

Biogenesis of circRBM33 mediated by N6-methyladenosine and its function in abdominal aortic aneurysm.

Epigenetics

Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Published: December 2024

This study aimed to explore whether m6A modification affects the biogenesis of circRBM33, which is involved in the progression of abdominal aortic aneurysm (AAA). For experiments, vascular smooth muscle cells (VSMCs) were treated with Ang II. MeRIP‒PCR was used to assess m6A modification of circRBM33. Gene expression was measured using RT‒qPCR and Western blotting. For experiments, a mouse model of AAA was established via Ang II infusion. HE, Sirius Red and TUNEL staining was performed to evaluate pathological changes and cell apoptosis in aortic vessels. The results showed that the m6A level of circRBM33 was abnormally increased in Ang II-induced VSMCs. In addition, METTL3 positively regulated circRBM33 expression. YTHDC1 deficiency decreased circRBM33 expression but had no effect on RBM33 mRNA expression. Notably, neither METTL3 nor YTHDC1 influenced the stability of circRBM33 or RBM33 mRNA. The interaction between circRBM33 and METTL3/YTHDC1 was verified by RIP analysis. Moreover, the Ang II-induced increase in circRBM33 expression was reversed by cycloleucine (an inhibitor of m6A methylation). Importantly, the m6A modification and expression of circRBM33 in the circRBM33-m6A-mut2-expressing VSMCs were not altered by METTL3 silencing. Mechanistically, METTL3/YTHDC1 modulates the biogenesis of circRBM33 in an m6A-dependent manner. In addition, circRBM33 knockdown alleviated AAA by reducing ECM degradation in the Ang II-infused mice. In conclusion, this study demonstrated that METTL3/YTHDC1-mediated m6A modification modulates the biogenesis of circRBM33 from exons of the RBM33 gene. Moreover, knockdown of circRBM33 alleviated AAA by reducing ECM degradation, which may provide a novel therapeutic strategy for treating AAA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385162PMC
http://dx.doi.org/10.1080/15592294.2024.2392401DOI Listing

Publication Analysis

Top Keywords

biogenesis circrbm33
16
m6a modification
16
circrbm33
13
circrbm33 expression
12
abdominal aortic
8
aortic aneurysm
8
ang ii-induced
8
rbm33 mrna
8
modulates biogenesis
8
alleviated aaa
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!