A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanostructured NiS-based flexible smart sensors for human respiration monitoring. | LitMetric

Nanostructured NiS-based flexible smart sensors for human respiration monitoring.

Philos Trans A Math Phys Eng Sci

Department of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad, Telangana 500043, India.

Published: October 2024

The growing demand for wearable healthcare devices has led to an urgent need for cost-effective, wireless and portable breath monitoring systems. However, it is essential to explore novel nanomaterials that combine state-of-the-art flexible sensors with high performance and sensing capabilities along with scalability and industrially acceptable processing. In this study, we demonstrate a highly efficient NiS-based flexible capacitive sensor fabricated via a solution-processible route using a novel single-source precursor [Ni{SP(OPr)}]. The developed sensor could precisely detect the human respiration rate and exhibit rapid responsiveness, exceptional sensitivity and selectivity at ambient temperatures, with an ultra-fast response and recovery. The device effectively differentiates the exhaled breath patterns including slow, fast, oral and nasal breath, as well as post-exercise breath rates. Moreover, the sensor shows outstanding bending stability, repeatability, reliable and robust sensing performance and is capable of contactless sensing. The sensor was further employed with a user-friendly wireless interface to facilitate smartphone-enabled real-time breath monitoring systems. This work opens up numerous avenues for cost-effective, sustainable and versatile sensors with potential applications for Internet of Things-based flexible and wearable electronics.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2023.0323DOI Listing

Publication Analysis

Top Keywords

nis-based flexible
8
human respiration
8
breath monitoring
8
monitoring systems
8
breath
5
nanostructured nis-based
4
flexible
4
flexible smart
4
smart sensors
4
sensors human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!