Leveraging diverse cellular stress patterns for predicting clinical outcomes and therapeutic responses in patients with multiple myeloma.

J Cell Mol Med

Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China.

Published: September 2024

Tumour microenvironment harbours diverse stress factors that affect the progression of multiple myeloma (MM), and the survival of MM cells heavily relies on crucial stress pathways. However, the impact of cellular stress on clinical prognosis of MM patients remains largely unknown. This study aimed to provide a cell stress-related model for survival and treatment prediction in MM. We incorporated five cell stress patterns including heat, oxidative, hypoxic, genotoxic, and endoplasmic reticulum stresses, to develop a comprehensive cellular stress index (CSI). Then we systematically analysed the effects of CSI on survival outcomes, clinical characteristics, immune microenvironment, and treatment sensitivity in MM. Molecular subtypes were identified using consensus clustering analysis based on CSI gene profiles. Moreover, a prognostic nomogram incorporating CSI was constructed and validated to aid in personalised risk stratification. After screening from five stress models, a CSI signature containing nine genes was established by Cox regression analyses and validated in three independent datasets. High CSI was significantly correlated with cell division pathways and poor clinical prognosis. Two distinct MM subtypes were identified through unsupervised clustering, showing significant differences in prognostic outcomes. The nomogram that combined CSI with clinical features exhibited good predictive performances in both training and validation cohorts. Meanwhile, CSI was closely associated with immune cell infiltration level and immune checkpoint gene expression. Therapeutically, patients with high CSI were more sensitive to bortezomib and antimitotic agents, while their response to immunotherapy was less favourable. Furthermore, in vitro experiments using cell lines and clinical samples verified the expression and function of key genes from CSI. The CSI signature could be a clinically applicable indicator of disease evaluation, demonstrating potential in predicting prognosis and guiding therapy for patients with MM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381192PMC
http://dx.doi.org/10.1111/jcmm.70054DOI Listing

Publication Analysis

Top Keywords

cellular stress
12
csi
11
stress patterns
8
multiple myeloma
8
clinical prognosis
8
subtypes identified
8
csi signature
8
high csi
8
stress
7
clinical
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!