AI Article Synopsis

  • Adeno-associated viruses (AAVs) are important tools used for delivering genes in research and clinical settings, but understanding how these viruses interact with cells can be challenging, especially for those that have been modified through directed evolution.
  • This study uses a human cell microarray platform to uncover how both natural and engineered AAVs connect with human cell receptors, discovering that AAV9 specifically interacts with interleukin 3 (IL3) and that engineered AAVs can interact with the low-density lipoprotein receptor-related protein 6 (LRP6), which might enhance their ability to cross the blood-brain barrier.
  • The findings also highlight potential side effects from engineered AAVs due to off-target tissue binding, paving the

Article Abstract

Adeno-associated viruses (AAVs) are foundational gene delivery tools for basic science and clinical therapeutics. However, lack of mechanistic insight, especially for engineered vectors created by directed evolution, can hamper their application. Here, we adapt an unbiased human cell microarray platform to determine the extracellular and cell surface interactomes of natural and engineered AAVs. We identify a naturally-evolved and serotype-specific interaction between the AAV9 capsid and human interleukin 3 (IL3), with possible roles in host immune modulation, as well as lab-evolved low-density lipoprotein receptor-related protein 6 (LRP6) interactions specific to engineered capsids with enhanced blood-brain barrier crossing in non-human primates after intravenous administration. The unbiased cell microarray screening approach also allows us to identify off-target tissue binding interactions of engineered brain-enriched AAV capsids that may inform vectors' peripheral organ tropism and side effects. Our cryo-electron tomography and AlphaFold modeling of capsid-interactor complexes reveal LRP6 and IL3 binding sites. These results allow confident application of engineered AAVs in diverse organisms and unlock future target-informed engineering of improved viral and non-viral vectors for non-invasive therapeutic delivery to the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381518PMC
http://dx.doi.org/10.1038/s41467-024-52149-0DOI Listing

Publication Analysis

Top Keywords

human cell
8
blood-brain barrier
8
cell microarray
8
engineered aavs
8
engineered
5
cell surface-aav
4
surface-aav interactomes
4
interactomes identify
4
identify lrp6
4
lrp6 blood-brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!