A novel colorimetric approach specifically designed to effectively identify the presence of 3-aminophenol (3-AP) in environmental water is introduced. Briefly, a nitrogen-doped carbon-supported cobalt nanozyme (Co@CN-1) was synthesized and utilized to improve the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of peroxymonosulfate (PMS). Comparative catalytic reactions confirmed that the performance of PMS as an activator exceeds that of hydrogen peroxide catalytically by a factor of 3.5. The catalytic reaction parameters underwent optimization, further resulting in the derivation of a linear detection equation for 3-AP, expressed as inhibition rate (IR%) = 3.35[3-AP]-4.36 (0-20 μM, R = 0.994) and IR% = 1.43[3-AP] + 31.87 (20-36 μM, R = 0.992), with the limit of detection (LOD) of 2.84 μM. The linear relationship between 3-AP concentration and the conversion of color to grayscale value (GSV) was established by smartphones, expressed as GSV = 1.28[3-AP] + 147.10 (R = 0.972). Density functional theory calculations revealed that Co acts as the preferred active site for donating electrons in PMS activation. This work provides a rapid and accurate approach for monitoring 3-AP concentration, enabling real-time analysis and potentially contributing to environmental and ecological studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-024-06658-w | DOI Listing |
Mikrochim Acta
September 2024
Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052, Ghent, Belgium.
A novel colorimetric approach specifically designed to effectively identify the presence of 3-aminophenol (3-AP) in environmental water is introduced. Briefly, a nitrogen-doped carbon-supported cobalt nanozyme (Co@CN-1) was synthesized and utilized to improve the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of peroxymonosulfate (PMS). Comparative catalytic reactions confirmed that the performance of PMS as an activator exceeds that of hydrogen peroxide catalytically by a factor of 3.
View Article and Find Full Text PDFMed Oncol
November 2023
Department of Orthopedics, Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, Hubei, People's Republic of China.
3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) has broad-spectrum antitumor activity. However, its role in osteosarcoma (OS) remains unclear. Therefore, this study explored the effects of 3-AP on OS in vitro and in vivo using three human OS cell lines (MG-63, U2-OS, and 143B) and a nude mice model generated by transplanting 143B cells.
View Article and Find Full Text PDFCommun Biol
August 2023
State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Microbial bioactive natural products mediate ecologically beneficial functions to the producing strains, and have been widely used in clinic and agriculture with clearly defined targets and underlying mechanisms. However, the physiological effects of their biosynthesis on the producing strains remain largely unknown. The antitumor ansamitocin P-3 (AP-3), produced by Actinosynnema pretiosum ATCC 31280, was found to repress the growth of the producing strain at high concentration and target the FtsZ protein involved in cell division.
View Article and Find Full Text PDFMolecules
May 2023
National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
Machaeriols and machaeridiols are unique hexahydrodibenzopyran-type aralkyl phytocannabinoids isolated from Pers. Earlier studies of machaeriol A () and B () did not show any affinity for cannabinoid receptor 1 (CB1 or CNR1), although they are structural analogs of psychoactive hexahydrocannabinol. This study comprehensively reports on the affinities of isolated Pers.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
June 2022
Laboratory of Applied Microbiology and Enzyme Engineering, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China.
A novel approach involving exogenous oxygen vectors was developed for improving the production of biosynthetic Ansamitocin P-3 (AP-3). Four types of oxygen vectors including soybean oil, n-dodecane, n-hexadecane, and Tween-80 were applied to explore the effect of exogenous oxygen vectors on AP-3 yield. It was observed that soybean oil exhibited a better ability for promoting AP-3 generation than the other three oxygen vectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!