The microenvironment of wound healing is susceptible to bacterial infection, chronic inflammation, oxidative stress, and inadequate angiogenesis, requiring the development of innovative wound dressings with antibacterial, anti-inflammatory, antioxidant, and angiogenic capabilities. This research crafted a new multifunctional bacterial cellulose composite membrane infused with copper-doped carbon dots (BC/Cu(II)-RCDs). Findings validated the successful loading of copper-doped carbon dots onto the BC membrane via hydrogen bonding interactions. Compared to the pure BC membrane, the BC/Cu(II)-RCDs composite membrane exhibited significantly enhanced hydrophilicity, tensile properties, and thermal stability. Diverse in vitro assays demonstrated excellent biocompatibility and antibacterial activity of BC/Cu(II)-RCDs composite membranes, alongside their ability to expedite the inflammatory phase and stimulate angiogenesis. In vivo trials corroborated the membrane's ability to foster epithelial regeneration, collagen deposition, and tissue regrowth in full-thickness skin wounds in rats while also curbing inflammation in infected full-thickness skin wounds. More importantly, the treatment of the BC/Cu(II)-RCDs composite membrane may result in the activation of VEGF and MAPK signaling proteins, which are key players in cell migration, angiogenesis, and skin tissue development. In essence, the developed BC/Cu(II)-RCDs composite membrane shows promise for treating infected wounds and serves as a viable alternative material for medicinal bandages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122656 | DOI Listing |
Cryobiology
January 2025
The National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova st, 61000 Kharkiv, Ukraine; Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 6 Trinklera st, 61022 Kharkiv, Ukraine. Electronic address:
Membrane alterations are among central factors predetermining cell survival during cryopreservation. In the present research, we tested some serum-/xeno-free cryoprotective compositions including dimethyl sulfoxide (MeSO) and polymers for their osmotic impact and toxicity towards testicular interstitial cells (ICs). IC survival was determined after their contact with MeSO, dextran (D40), hydroxyethyl starch (HES), polyethylene glycols (PEG1500 and PEG400), or after cryopreservation and cryoprotective agent (CPA) removal.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. Electronic address:
The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Biobizkaia Health Research Institute, 48903, Barakaldo, Spain.
Clear cell renal cell carcinoma (ccRCC) is one of the most challenging neoplasms because of its phenotypic variability and intratumoral heterogeneity. Because of its variability, ccRCC is a good test bench for the application of new technological approaches to unveiling its intricacies. Multiplex immunofluorescence (mIF) is an emerging method that enables the simultaneous and detailed assessment of tumor and stromal cell subpopulations in a single tissue section.
View Article and Find Full Text PDFEur Heart J Acute Cardiovasc Care
January 2025
Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea.
Background: The long-term effects of early left ventricular unloading after venoarterial extracorporeal membrane oxygenation (VA-ECMO) remain unclear.
Methods: The EARLY-UNLOAD trial was a single-center, investigator-initiated, open-label, randomized clinical trial involving 116 patients with cardiogenic shock (CS) undergoing VA-ECMO. The patients were randomly assigned to undergo either early routine left ventricular unloading by transseptal left atrial cannulation within 12 hours after randomization or the conventional approach, which permitted rescue transseptal cannulation in case of an increased left ventricular afterload.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!