P(MMA-co-MAA)/cellulose nanofibers composites: Effect of hydrogen bonds on molecular mobility.

Carbohydr Polym

Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, CEDEX, F-69621 Villeurbanne, France. Electronic address:

Published: December 2024

AI Article Synopsis

  • The study explored the preparation of cellulose nanofiber (CNF) nanocomposites using PMMA-co-MAA to analyze macromolecular mobility and H-bonding effects.
  • Dynamic mechanical analysis and dielectric spectroscopy revealed that adding CNFs slowed down relaxation processes despite similar transition temperatures.
  • The introduction of CNFs also resulted in a new β'-relaxation linked to interactions between CNF and matrix groups, while the activation energy for γ-relaxation increased significantly, suggesting CNFs hindered mobility in the polymer chain.

Article Abstract

Cellulose nanofibers (CNFs) nanocomposites were prepared using poly(methylmethacrylate-co-methacrylic acid) (PMMA-co-MAA) to investigate the macromolecular mobility within the composite, with particular focus on the effect of H-bonding. Dynamic mechanical analysis (DMA) and broadband dielectric spectroscopy (BDS) were used to fully characterize the molecular mobility for which the effect of the introduction of H-bond forming moieties and the addition of CNFs (5 and 15 wt%) were assessed. Despite similar T values (determined by Differential Scanning Calorimetry), a deeper analysis of the relaxation times associated with the α-relaxation evidenced a significant effect induced by CNFs, which is in fact slowing down the macromolecular relaxation processes. The activation energy of the β-relaxation remained unchanged despite the introduction of MAA units in the main chain and the successive addition of CNFs. However, the latter led to the appearance at low frequencies of a new β'-relaxation correlated with the interactions between the CNF surface -OH groups and the -COOH groups of the matrix. The γ-relaxation showed a 45 % increase in activation energy from PMMA to PMMA-co-MAA + CNF nanocomposites regardless of the CNF content, due to the possibility of CNFs to interact and hinder the motion of the main chain methyl groups in α position.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122579DOI Listing

Publication Analysis

Top Keywords

molecular mobility
8
addition cnfs
8
activation energy
8
main chain
8
cnfs
5
pmma-co-maa/cellulose nanofibers
4
nanofibers composites
4
composites hydrogen
4
hydrogen bonds
4
bonds molecular
4

Similar Publications

Physicochemical characteristics of chitosan molecules: Modeling and experiments.

Adv Colloid Interface Sci

December 2024

Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. Electronic address:

Chitosan, a biocompatible polysaccharide, finds a wide range of applications, inter alia as an antimicrobial agent, stabilizer of food products, cosmetics, and in the targeted delivery of drugs and stem cells. This work represents a comprehensive review of the properties of chitosan molecule and its aqueous solutions uniquely combining theoretical modeling and experimental results. The emphasis is on physicochemical aspects which were sparsely considered in previous reviews.

View Article and Find Full Text PDF

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

Evaluation of HMGB1 Expression as a Clinical Biomarker for Cholangiocarcinoma.

Cancer Genomics Proteomics

December 2024

Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;

Background/aim: Cholangiocarcinoma (CCA) is an epithelial malignancy that is most prevalent in Southeast Asia, particularly in the northeast of Thailand. Identifying and establishing specific biomarkers of CCA is crucial for ensuring accurate prognosis and enabling effective treatment. High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that can be released by dead or injured cells and is associated with tumor progression.

View Article and Find Full Text PDF

G3BP-driven RNP granules promote inhibitory RNA-RNA interactions resolved by DDX3X to regulate mRNA translatability.

Mol Cell

December 2024

Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307 Saxony, Germany. Electronic address:

Ribonucleoprotein (RNP) granules have been linked to translation regulation and disease, but their assembly and regulatory mechanisms are not well understood. Here, we show that the RNA-binding protein G3BP1 preferentially interacts with unfolded RNA, driving the assembly of RNP granule-like condensates that establish RNA-RNA interactions. These RNA-RNA interactions limit the mobility and translatability of sequestered mRNAs and stabilize the condensates.

View Article and Find Full Text PDF

Muscle and tendon injuries are prevalent occurrences during sports activities. Platelet-rich plasma (PRP) is known for its rich content of factors essential for wound healing, inflammation reduction, and tissue repair. Despite its recognized benefits, limited information is available regarding PRP's effectiveness in addressing combined surgical injuries to the gastrocnemius muscle and Achilles tendon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!