Agricultural liming improves acidic soils productivity and is considered a lever for mitigating nitrous oxide (NO) emissions from soils. However, the benefit of liming in reducing soil greenhouse gas (GHG) emissions depends on the evolution of carbon from the calcium carbonate (CaCO), and on the evolution of soil organic carbon (SOC) after CaCO application. The literature, based on limited field data, presents contrasting effects of liming on inorganic- and SOC-derived CO emissions, raising concerns that the reduction in NO emissions could be offset by increased CO emissions. Therefore, this study aimed to monitor NO and CO emissions following the application of lime materials to an acidic soil. In situ, we monitored the effect of two liming products (SC = synthetic CaCO and MC = marine CaCO) on soil CO emissions and compared this with control plots, during the growing season of a winter rye, using the static chamber method. Soil pH, NO emissions, mineral nitrogen concentrations, soil moisture and temperature were measured during the experiment, as were plant biomass and SOC (stock and composition) on the day of harvest. Lime addition increased soil pH from 5.7 to around 7.0, kernel yield from 320 to >400 g m and resulted in a significant reduction in soil CO emissions by approximately 40 % for both liming materials while it slightly increased NO emissions, that had nevertheless remained very low during the experiment. SOC at harvest was not significantly affected, while an increase in dissolved organic and inorganic carbon in the soil was observed. Further investigations is needed to clarify the mechanisms explaining these observations and to define conditions where liming application could act as a potential lever for carbon storage. Our results suggest that the IPCC principles, predicting increased CO emissions from lime-derived C, may need to be re-examined in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175973 | DOI Listing |
Sci Total Environ
January 2025
CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica.
Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.
View Article and Find Full Text PDFNoise Health
January 2025
Department of Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
Background: Patients with multiple sclerosis (MS) experience difficulties in understanding speech in noise despite having normal hearing.
Aim: This study aimed to determine the relationship between speech discrimination in noise (SDN) and medial olivocochlear reflex levels and to compare MS patients with a control group.
Material And Methods: Sixty participants with normal hearing, comprising 30 MS patients and 30 healthy controls, were included.
Neuroradiol J
January 2025
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Iran.
Introduction: The prevalence of neurodegenerative diseases has significantly increased, necessitating a deeper understanding of their symptoms, diagnostic processes, and prevention strategies. Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are two prominent neurodegenerative conditions that present diagnostic challenges due to overlapping symptoms. To address these challenges, experts utilize a range of imaging techniques, including magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China.
Thermally activated delayed fluorescence (TADF) materials have received increasing attention from organic electronics to other related fields, such as bioapplications and photocatalysts. However, it remains a challenging task for TADF emitters to showcase the versatility concurrent with high performance in multiple applications. Herein, we first present such a proof-of-concept TADF material, namely, QCN-SAC, through strategically manipulating exciton dynamics.
View Article and Find Full Text PDFScience
January 2025
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!