Next-generation influenza vaccines based on mRNA technology.

Lancet Infect Dis

Department of Virology, Institute of Experimental Medicine, Saint Petersburg, 197022, Russia.

Published: January 2025

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1473-3099(24)00562-0DOI Listing

Publication Analysis

Top Keywords

next-generation influenza
4
influenza vaccines
4
vaccines based
4
based mrna
4
mrna technology
4
next-generation
1
vaccines
1
based
1
mrna
1
technology
1

Similar Publications

The peculiar characteristics and advancement in diagnostic methodologies of influenza A virus.

Front Microbiol

January 2025

CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.

Influenza A virus (IAV) is a significant public health concern, causing seasonal outbreaks and occasional pandemics. These outbreaks result from changes in the virus's surface proteins which include hemagglutinin and neuraminidase. Influenza A virus has a vast reservoir, including wild birds, pigs, horses, domestic and marine animals.

View Article and Find Full Text PDF

A new pathogen pattern of acute respiratory tract infections in primary care after COVID-19 pandemic: a multi-center study in southern China.

BMC Infect Dis

January 2025

Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518001, China.

Background: After the coronavirus disease 2019 (COVID-19) pandemic, no studies on bacterial and atypical pathogens were conducted in primary care. We aimed to describe the etiological composition of acute respiratory tract infections (ARTIs) presenting to primary care with limited resources after the pandemic.

Methods: 1958 adult patients with ARTIs from 17 primary care clinics were recruited prospectively from January 2024 to March 2024.

View Article and Find Full Text PDF

Reaction-advection-diffusion model of highly pathogenic avian influenza with behavior of migratory wild birds.

J Math Biol

January 2025

School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, Jilin, People's Republic of China.

Wild birds are one of the main natural reservoirs for avian influenza viruses, and their migratory behavior significantly influences the transmission of avian influenza. To better describe the migratory behavior of wild birds, a system of reaction-advection-diffusion equations is developed to characterize the interactions among wild birds, poultry, and humans. By the next-generation operator, the basic reproduction number of the model is formulated.

View Article and Find Full Text PDF

PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins.

Nat Chem Biol

January 2025

State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.

View Article and Find Full Text PDF

Serum amyloid A (SAA) is a key biomarker for diagnosing inflammatory responses in diseases like influenza and COVID-19. An electrochemiluminescence (ECL) biosensor has been constructed for signal enhancement in SAA detection by encapsulating 4,4',4″,4‴-(1,3,6,8-pyrenetetrayl) tetrakis-benzoic acid (TBAPy) into liposomes. Such biomimetic encapsulation shields the biologically important membrane to avoid aggregation of TBAPy and prevents quenching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!