Antibiotics are essential for treating infections and reducing risks during medical interventions. However, many commonly used antibiotics lack the physiochemical properties for an efficient oral administration when treating systemic infection. Instead, we are reliant on intravenous delivery, which presents complications outside of clinical settings. Developing novel formulations for oral administration is a potential solution to this problem. We engineered hexosome and cubosome liquid crystal nanoparticles (LCNPs) characterized by small-angle X-ray scattering and cryogenic transmission electron microscopy, and could encapsulate the antibiotics vancomycin (VAN) and clarithromycin (CLA) with high loading efficiencies. By rationally choosing stable lipid building blocks, the loaded LCNPs demonstrated excellent resilience against enzymatic degradation in an in vitro gut model LCNP stability is crucial as premature antibiotic leakage can negatively impact the gut microbiota. In screens against the representative gut bacteria Enterococcus faecalis and Escherichia coli, our LCNPs provided a protective effect. Furthermore, we explored co-administration and dual loading strategies of VAN and CLA, and demonstrated effective loading, stability and protection for E. faecalis and E. coli. This work represents a proof of concept for the early-stage development of antibiotic-loaded LCNPs to treat systemic infection via oral administration, opening opportunities for combination antibiotic therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.08.230 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!