Necrotizing enterocolitis (NEC) is a lethal gastrointestinal disease affecting premature infants. Although earlier studies have highlighted protective effects of milk-derived peptides against NEC, the role of the human β-casein-derived peptide BCCY-1 in intestinal barrier protection has never been investigated. Here, we showed that BCCY-1 alleviated the phenotype of NEC, reduced intestinal expression of Toll-like receptor 4 (TLR4) and interleukin-6, and improved the intestinal barrier integrity. NEC-associated multi-organ injury and impaired bone marrow hematopoiesis were also attenuated by BCCY-1. Metabolic screening revealed significant changes in intestinal metabolites in the NEC and NEC + BCCY-1 groups. Further analysis disclosed inhibition of 3-Nitrotyrosine formation due to the preservation of endothelial nitric oxide synthase (eNOS) activity, which was associated with the interactions between BCCY-1 and lipopolysaccharides, leading to disruption of TLR4 signaling. Our findings suggested that BCCY-1 improved intestinal barrier integrity through modulating the TLR4/eNOS/3-Nitrotyrosine axis, highlighting its potential role in the maintenance of intestinal health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140821DOI Listing

Publication Analysis

Top Keywords

intestinal barrier
16
improved intestinal
12
barrier integrity
12
human β-casein-derived
8
β-casein-derived peptide
8
peptide bccy-1
8
bccy-1 improved
8
tlr4/enos/3-nitrotyrosine axis
8
intestinal
7
bccy-1
6

Similar Publications

Alcohol abuse can lead to significant cardiac injury, resulting in Alcoholic heart disease (AHD). The interplay between cardiac health and gut microbiota composition in the context of alcohol consumption is not well understood. Shen Song Yang Xin (SSYX) capsule and amiodarone are common drugs used to treat alcoholic heart disease, but little is known about their microbial regulatory mechanisms in alcoholic heart disease.

View Article and Find Full Text PDF

Copper-luteolin nanocomplexes for Mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease.

Bioact Mater

April 2025

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.

Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).

View Article and Find Full Text PDF

Background: Acacetin (AC) is a flavonoid compound with antiperoxidant, anti-inflammatory, and antiplasmodial activity. However, the solubility of AC is poor and nano acacetin (Nano AC) was synthesized. The intestinal mucosal barrier is impaired in sepsis rats, and the protective effects and mechanism of AC and Nano AC on the intestinal mucosal barrier are unclear.

View Article and Find Full Text PDF

Inflammatory bowel disease, including Crohn's disease and ulcerative colitis, poses an emerging threat as it can lead to colorectal cancer, thrombosis, and other chronic conditions. The present study demonstrated the protective effects of peanut sprout extracts (PSEs) prepared from day 2 to day 7 of germination against lipopolysaccharide (LPS)-induced epithelial barrier breakdown. Although the peanut sprout length increased in a time-dependent manner from day 1 to day 7, the extraction yields remained relatively consistent from day 2 to day 7.

View Article and Find Full Text PDF

The mesenteric adipokine SFRP5 alleviated intestinal epithelial apoptosis improving barrier dysfunction in Crohn's disease.

iScience

December 2024

Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China.

The hypertrophic mesenteric adipose tissue (htMAT) of Crohn disease (CD) participates in inflammation through the expression of adipokines, but the exact mechanism of this action in the intestine is unknown. Here, we analyzed the expression of secreted frizzled-related protein 5 (SFRP5), an adipokine with cytoprotective effects, in htMAT and its role in CD. The results of this study revealed that the level of SFPR5 increased in the diseased MAT (htMAT) of CD patients and aggregated among intestinal epithelial cells in the diseased intestine and that it could ameliorate intestinal barrier dysfunction in tumor necrosis factor alpha (TNF-α)-stimulated colonic organoids and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced mice at least in part through the inhibition of Wnt5a-mediated apoptosis in epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!