Constructed Wetlands (CW) have gained popularity over the last decades due to their cost-effectiveness, easy and simple operation and environmental compatibility in wastewater treatment. This ecological engineering technology appears particularly ideal for low-income regions. In this study, three widely used CW types (horizontal flow, vertical flow, and hybrid CW) were constructed and evaluated for their effectiveness in removing various pollution parameters (BOD, COD, TSS, NH-N, NO-N, and TP) from an industrial effluent. Different configurations were tested such as CW type, hydraulic residence time, plants presence, and artificial aeration. Results showed that the hybrid CW configuration (i.e., vertical flow CW followed by horizontal subsurface flow CW) achieved the highest removal rates of all pollutants, i.e., more than 90% of BOD, COD, TSS, and NH-N. The single horizontal flow and vertical flow CW designs showed variations in the removal of NO-N and TP (less than 30%), which were significantly improved (50% and 70%, respectively) by using the hybrid CW system. Artificial aeration significantly improves the performance of the CW system, especially for ammonia nitrogen and organic matter removal, while plants presence is also beneficial in the treatment performance. An 8-days HRT seems to be adequate for high removal rates in passive CW designs, though in aerated wetlands a lower HRT of 4 days seems sufficient. These findings suggest that the hybrid CW system could be a promising option for efficient wastewater treatment in developing regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.122348 | DOI Listing |
Int J Phytoremediation
January 2025
Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.
The increasing demand for sustainable, robust, and cost-efficient arsenic (As) treatment techniques strengthens the implementation of new constructed wetland (CW) designs like aerated CWs in the agricultural sector. The aim was to assess and contrast the influence of various aeration rates on As elimination in subsurface flow CW utilizing plants for treating As-polluted sand. This study consisted of an experiment with 16 subsurface flow CW, operating at different As concentrations of 0, 5, 22, and 39 mg kg and aeration rates of 0, 0.
View Article and Find Full Text PDFWater Res
March 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Research and Application Centre for Membrane Technology, School of Environment, Tsinghua University, Beijing, 100084, China. Electronic address:
The integration of partial nitrification-anammox (PN/A) into membrane-aerated biofilm reactor (MABR) is a promisingly energy-efficient and high-efficiency technology for nitrogen removal. The inhibition of nitrite oxidizing bacteria (NOB) remains as the most significant challenge for its development. In our investigation, we proposed a novel process to integrate carriers to MABR (CMABR), which combined the carriers enriched with anaerobic ammonium-oxidizing bacteria (AnAOB) and partial nitrifying MABR system.
View Article and Find Full Text PDFDiagnostics (Basel)
November 2024
Department of Diagnostic Imaging, National University of Singapore, Singapore 119228, Singapore.
A-lines and B-lines are key ultrasound markers that differentiate normal from abnormal lung conditions. A-lines are horizontal lines usually seen in normal aerated lungs, while B-lines are linear vertical artifacts associated with lung abnormalities such as pulmonary edema, infection, and COVID-19, where a higher number of B-lines indicates more severe pathology. This paper aimed to evaluate the effectiveness of a newly released lung ultrasound AI tool (ExoLungAI) in the detection of A-lines and quantification/detection of B-lines to help clinicians in assessing pulmonary conditions.
View Article and Find Full Text PDFChemosphere
November 2024
Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China. Electronic address:
This study aimed to investigate the effects of different voltage and aeration conditions on catering wastewater treatment and membrane fouling in a novel annular electric field membrane bioreactor (AEMBR). The results indicated that the synergistic effect of annular electric field and aeration promoted the degradation of wastewater and the alleviation of membrane fouling. The treatment effect was optimal under a micro electric field of 0.
View Article and Find Full Text PDFBioresour Technol
January 2025
MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
It is feasible to integrate an anaerobic membrane bioreactor with a membrane aerated biofilm reactor to efficiently implement the sulfate reduction, simultaneous nitrification and autotrophic denitrification process. However, the effect of parameters on nutrient removal and environmental impacts of the process are unclear. In this study, the reactor performance was mainly influenced by the chemical oxygen demand to sulfate (COD/S) ratio and the ammonium to sulfate (N/S) ratio in long-term operation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!