Altered muscle fibre activation in an antagonistic muscle pair due to perturbed afferent feedback caused by blood flow restriction.

J Electromyogr Kinesiol

Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany; Department of Biomechatronic Systems, Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart, Germany.

Published: December 2024

Purpose: This study aimed to better understand the coping strategy of the neuromuscular system under perturbed afferent feedback. To this end, the neuromechanical effects of transient blood flow restriction (BFR) compared to atmospheric pressure were investigated in an antagonistic muscle pair.

Methods: Perceived discomfort and neuromechanical parameters (torque and high-density electromyography) were recorded during submaximal isometric ankle dorsiflexion before, during and after BFR. The tibialis anterior and gastrocnemius lateralis muscles were studied in 14 healthy young adults.

Results: Discomfort increased during BFR and decreased to baseline level afterwards. The exerted torque and the co-activation index remained constant, whereas the EMG signal energy increased significantly during BFR. Coherence analysis of the delta band remained constant, whereas the alpha band shows an increase during BFR. Median frequency and muscle fibre conduction velocity showed a positive trend during the first minutes of BFR before significantly decreasing. Both parameters exceeded baseline values after cuff deflation.

Conclusion: Perturbed afferent feedback leads to altered neuromechanical parameters. We assume that increased central drive is required to maintain force output, resulting in changed muscle fibre activity. Glycolytic fast-switch fibres are only active for a short time due to oxygen deprivation and hyperacidity, but fatigue effects predominate in the long term.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelekin.2024.102922DOI Listing

Publication Analysis

Top Keywords

muscle fibre
12
perturbed afferent
12
afferent feedback
12
antagonistic muscle
8
blood flow
8
flow restriction
8
neuromechanical parameters
8
increased bfr
8
remained constant
8
bfr
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!