Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While undisputedly important, and part of any systematic review (SR) by definition, evaluation of the risk of bias within the included studies is one of the most time-consuming parts of performing an SR. In this paper, we describe a case study comprising an extensive analysis of risk of bias (RoB) and reporting quality (RQ) assessment from a previously published review (CRD42021236047). It included both animal and human studies, and the included studies compared baseline diseased subjects with controls, assessed the effects of investigational treatments, or both. We compared RoB and RQ between the different types of included primary studies. We also assessed the "informative value" of each of the separate elements for meta-researchers, based on the notion that variation in reporting may be more interesting for the meta-researcher than consistently high/low or reported/non-reported scores. In general, reporting of experimental details was low. This resulted in frequent unclear risk-of-bias scores. We observed this both for animal and for human studies and both for disease-control comparisons and investigations of experimental treatments. Plots and explorative chi-square tests showed that reporting was slightly better for human studies of investigational treatments than for the other study types. With the evidence reported as is, risk-of-bias assessments for systematic reviews have low informative value other than repeatedly showing that reporting of experimental details needs to improve in all kinds of in vivo research. Particularly for reviews that do not directly inform treatment decisions, it could be efficient to perform a thorough but partial assessment of the quality of the included studies, either of a random subset of the included publications or of a subset of relatively informative elements, comprising, e.g. ethics evaluation, conflicts of interest statements, study limitations, baseline characteristics, and the unit of analysis. This publication suggests several potential procedures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380326 | PMC |
http://dx.doi.org/10.1186/s13643-024-02650-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!