A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoencapsulation enhances the antimicrobial and antioxidant stability of cyclic lipopeptides for controlling Fusarium graminearum. | LitMetric

Nanoencapsulation enhances the antimicrobial and antioxidant stability of cyclic lipopeptides for controlling Fusarium graminearum.

Food Microbiol

School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:

Published: December 2024

Fusarium graminearum not only causes Fusarium head blight (FHB) on wheat but also produces fungal toxins that pose a serious threat to food safety. Biological control is one of the safe and most effective alternative methods. In this study, cyclic lipopeptides (CLPs) produced from Bacillus mojavensis B1302 were extracted and identified by LC-MS/MS. After preparing mesoporous silica nanoparticles-NH (MSNsN) and encapsulating CLPs, the characterization analysis showed that the interaction between CLPs and MSNsN enhanced the crystal structure of CLPs-MSNsN. The antimicrobial activity and antioxidant capacity of CLPs-MSNsN stored at 20 °C and 45 °C were decreased more slowly than those of free CLPs with increasing storage time, indicating the enhancement of the antimicrobial and antioxidant stability of CLPs. Moreover, the field control efficacy of long-term stored CLPs-MSNsN only decreased from 78.66% to 63.2%, but the efficacy of free CLPs decreased significantly from 84.34% to 26.01%. The deoxynivalenol (DON) content of wheat grains in the CLPs-MSNsN treatment group was lower than that in the free CLPs treatment group, which showed that long-term stored CLPs-MSNsN reduced the DON content in wheat grains. Further analysis of the action mechanism of CLPs-MSNsN on F. graminearum showed that CLPs-MSNsN could disrupt mycelial morphology, cause cell apoptosis, lead to the leakage of proteins and nucleic acids, and destroy the cell permeability of mycelia. This work puts a novel insight into the antimicrobial and antioxidant stability enhancement of CLPs-MSNsN through encapsulation and provides a potential fungicide to control F. graminearum, reduce toxins and ensure food safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2024.104621DOI Listing

Publication Analysis

Top Keywords

antimicrobial antioxidant
12
antioxidant stability
12
free clps
12
cyclic lipopeptides
8
fusarium graminearum
8
graminearum fusarium
8
food safety
8
clps-msnsn
8
long-term stored
8
stored clps-msnsn
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!