Determining ecological interactions of key dinoflagellate species using an intensive metabarcoding approach in a semi-closed coastal ecosystem of South Korea.

Harmful Algae

Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:

Published: September 2024

Marine phytoplankton communities are pivotal in biogeochemical cycles and impact global climate change. However, the dynamics of the dinoflagellate community, its co-occurrence relationship with other eukaryotic plankton communities, and environmental factors remain poorly understood. In this study, we aimed to analyze the temporal changes in the eukaryotic plankton community using a 18S rDNA metabarcoding approach. We performed intensive monitoring for 439 days at intervals of three days during the period from November 2018 to June 2020 (n = 260) in Jangmok Bay Time-series Monitoring Site in South Korea. Among the 16,224 amplicon sequence variants (ASVs) obtained, dinoflagellates were the most abundant in the plankton community (38 % of total relative abundance). The dinoflagellate community was divided into 21 groups via cluster analysis, which showed an annually similar distribution of low-temperature periods. Additionally, we selected 11 taxa that had an occurrence mean exceeding 1 % of the total dinoflagellate abundance, accounting for 93 % of the total dinoflagellate community: namely Heterocapsa rotundata, Gymnodinium sp., Akashiwo sanguinea, Amoebophrya sp., Euduboscquella sp., Spiniferites ramosus, Dissodinium pseudolunula, Sinophysis sp., Karlodinium veneficum, and Katodinium glaucum. The key dinoflagellate species were well represented at temporally variable levels over an entire year. Heterocapsa rotundata was not significantly affected by water temperature, whereas its dynamics were largely influenced by strong predation pressure, competition, and/or the supplementation of food sources. The growth of A. sanguinea was associated with dissolved inorganic phosphorus concentrations, while Euduboscquella sp. showed a significant relationship with D. pseudolunula and K. glaucum, largely representing a positive association that implies possible parasitic mechanisms. This study demonstrated interactions between key dinoflagellate species and the environment, as well as parasites, predators, competitors, and feeders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hal.2024.102698DOI Listing

Publication Analysis

Top Keywords

key dinoflagellate
12
dinoflagellate species
12
dinoflagellate community
12
interactions key
8
metabarcoding approach
8
south korea
8
eukaryotic plankton
8
plankton community
8
total dinoflagellate
8
heterocapsa rotundata
8

Similar Publications

Harmful algal blooms (HABs) formed by toxic microalgae have seriously threatened marine ecosystems and food safety and security in recent years. Among them, has attracted the attention of scientists and society due to its acute and rapid neurotoxicity in mice. Herein, the growth and gymnodimine A (GYM-A) production of were investigated in diverse culture systems with different surface-to-volume (S/V) ratios and nitrogen/phosphorus concentrations.

View Article and Find Full Text PDF

Microbial community assembly and co-occurrence patterns in Sanmen bay: A comparative analysis before and after nuclear power plant operation.

Sci Total Environ

December 2024

School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China. Electronic address:

The limited availability of historical data has resulted in the ongoing debate regarding the short-term effects of thermal discharge from nuclear power plants (NPPs) on microbial communities, including both prokaryotes and microeukaryotes. This study focused on the co-occurrence patterns, assembly processes, and community functions in the eutrophic coastal waters of Sanmen Bay (SMB) before and after NPP operation. Gammaproteobacteria and Alphaproteobacteria were the dominant prokaryotic taxa, while Dinoflagellates consistently maintained their prevalence in SMB.

View Article and Find Full Text PDF

Toxin production in bloom-forming, harmful alga Alexandrium pacificum (Group IV) is regulated by cyst formation-promoting bacteria Jannaschia cystaugens NBRC 100362.

Water Res

December 2024

Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

Harmful algal blooms (HABs) caused by dinoflagellates like Alexandrium pacificum pose significant ecological and public health risks due to their production of paralytic shellfish toxins (PSTs). Bacterial populations, particularly Alexandrium cyst formation-promoting bacteria (Alex-CFPB), are known to significantly influence growth, encystment, toxin synthesis, the composition of toxic components, and bloom dynamics of these dinoflagellates. However, the role of Alex-CFPB in Alexandrium toxin synthesis and the mechanisms thereof are still unclear.

View Article and Find Full Text PDF

Promoted growth with dynamic cellular stoichiometry driven by utilization of in-situ dissolved organic matter: Insights from bloom-forming dinoflagellate Prorocentrum donghaiense.

Mar Environ Res

December 2024

State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, China. Electronic address:

Mixotrophic dinoflagellates frequently cause harmful algal blooms (HABs) in eutrophic waters that contain diverse dissolved organic matter (DOM), especially intensive mariculture areas. Compared to the extensive investigation of phagotrophy and single organic molecule uptake by causative species, we have limited knowledge about the capability of mixotrophic dinoflagellates to utilize in-situ DOM in mariculture waters and its contribution to HABs. Here we use filtered in-situ mariculture water as the sole medium to examine the physiological response of Prorocentrum donghaiense to the natural mariculture DOM.

View Article and Find Full Text PDF

Photosymbiosis, a mode of mixotrophy by algal endosymbiosis, provides key advantage to pelagic life in oligotrophic oceans. Despite its ecological importance, mechanisms underlying its emergence and association with the evolutionary success of photosymbiotic lineages remain unclear. We used planktonic foraminifera, a group of pelagic test-forming protists with an excellent fossil record, to reveal the history of symbiont acquisition among their three main extant clades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!