Inhalation systems, mostly metered dose inhalers (MDIs) and dry powder inhalers (DPIs), are currently submitted to a critical assessment for their carbon footprint (CF) and environmental impact. They are related to greenhouse gas (GHG) emissions and they produce waste of used devices with withheld drug residues and unused doses. However, with estimated contributions to anthropogenic GHG-emissions of 0.03 % for MDIs and 0.0012 % for DPIs globally, it may not be expected that mitigating the GHG emissions from inhalers will have a meaningful effect on the current climate change and global warming, notwithstanding that nationally these percentages may be somewhat higher, depending on the ratio of MDIs to DPIs and the total national CF. MDIs are particularly the preferred type of inhalers over DPIs in the USA and UK with ratios of 9: 1 and 7: 3 respectively. In such countries, a partial switch from MDIs to DPIs is to be recommended, providing that such a switch does not jeopardize the therapy. Using renewable energy only for the production and waste management of DPIs will make this type of inhaler almost climate neutral. A greater concern exists about inhaler waste, more particularly about the residual drug and unused doses in discarded devices. Inhalers contribute <0.02 % to global plastic waste annually and most plastic inhalers end in the domestic waste bin and not as litter polluting the environment with plastic. However, they do contain retained drug and unused doses, whereas even full inhalers are disposed. Because globally most municipal waste (70 %) ends up in dumps and landfills, leakage of the drugs into the soil and surface waters is a serious problem. It pollutes drinking water and endangers species and biodiversity. Therefore, a good collection system and an adequate waste management program for used inhalers seems to be the most meaningful measure to take for the environment, as this will stop inhalers and drugs from putting ecosystems at risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2024.106893 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
: Metered-dose inhalers (MDIs) and dry powder inhalers (DPIs) are common inhaled corticosteroid (ICS) inhaler devices. The difference in formulation and administration technique of these devices may influence oral cavity microbiota composition. We aimed to compare the saliva microbiome in children with moderate-to-severe asthma using ICS via MDIs versus DPIs.
View Article and Find Full Text PDFJ Aerosol Sci
January 2025
Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA.
The use of air-jet dry powder inhalers (DPIs) offers a number of advantages for the administration of pharmaceutical aerosols, including the ability to achieve highly efficient and potentially targeted aerosol delivery to the lungs of children using the oral or trans-nasal routes of administration. To better plan targeted lung delivery of pharmaceutical aerosols with these inhalers, more information is needed on the extrathoracic (ET) depositional loss in pediatric subjects when using relatively small (e.g.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pulmonary, Allergy, and Critical Care Medicine, Chungnam National University School of Medicine, Daejeon, South Korea.
Background: Choosing effective devices (inhaled corticosteroid [ICS]-long-acting β2 agonist [LABA] combination inhalers) as maintenance treatment is critical for managing patients with asthma. We aimed to compare ICS/LABA combination efficacy, safety, and adherence across inhaler types and components in patients newly diagnosed with asthma.
Methods: Utilizing South Korea's National Health Insurance Service data, we conducted a population-based cohort study involving patients aged 18-80 years, newly diagnosed with asthma who received ICS/LABA combination therapy between January 2016 and December 2020.
Eur J Hosp Pharm
January 2025
Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
Background: The healthcare sector contributes significantly to global greenhouse emissions, with inhalers being major contributors.
Objective: To develop a framework for reducing the environmental footprint of inhalers in Spain by implementing greener prescription practices.
Methods: A multidisciplinary working group was formed, including hospital pharmacists, pulmonologists, and environmental experts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!