Rare earth europium recovery using selective metal-organic framework incorporated mixed-matrix membrane.

Chemosphere

School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia. Electronic address:

Published: September 2024

Rare-earth elements (REEs) play a crucial role in state-of-the-art technologies and sustainable energy generation. However, conventional production methods of REE often instigate detrimental impacts on environment. Hence, the development of efficient and sustainable hydrometallurgical methods for REE recovery from complex solution has become a crucial research focus. This study investigates a mixed-matrix membrane composed of a highly europium selective metal-organic framework-based adsorbent, Cr-MIL-PMIDA, embedded in sulfonated poly(ether ketone) (SPEK) polymer membrane matrix to preferentially concentrate europium (Eu) ions in the presence of other competing cations. The activated membrane notably reduced ionic conductivity for Eu compared to other multivalent ions. Membrane extraction experiments further confirmed the selective behavior, demonstrating slower diffusion for Eu compared to Mg and Zn cations. Especially, at pH 5, Mg⁺ and Zn⁺ recovery was greater than 30%, whereas Eu³⁺ recovery remained lower than 4%. We propose that the strong chemical affinity between the phosphate group and Eu help partition of the Eu ions in the membrane phase and inhibit the diffusion and further partitioning of the Eu ion from bulk solution. Furthermore, we demonstrate the stability of the composite membrane and the embedded MOF particles in aqueous solution for up to 12 days without degradation, attributing it to the robust chemical stability of the MOF structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143272DOI Listing

Publication Analysis

Top Keywords

selective metal-organic
8
mixed-matrix membrane
8
methods ree
8
ions membrane
8
membrane
7
rare earth
4
earth europium
4
recovery
4
europium recovery
4
recovery selective
4

Similar Publications

Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal-organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g.

View Article and Find Full Text PDF

Atomically precise metal nanoclusters (NCs) and metal-organic frameworks (MOFs) possess distinct properties that can present challenges in certain applications. However, integrating these materials to create new composite functional materials has gained significant interest due to their unique characteristics through a range of applications, particularly in catalysis. Considering MOFs as hosts and NCs as guests, several synergistic effects have been observed in composites, particularly in environmental catalytic reactions.

View Article and Find Full Text PDF

A fluorescent sensor based on pentafluoropropanoic acid-functionalized UiO-66-NH for enhanced selectivity and sensitivity of dicloran detection.

Mikrochim Acta

January 2025

Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, China.

A pentafluoropropionic acid-functionalized fluorescent metal-organic framework material (UiO-66-NH-PFPA) is prepared by a simple post-synthetic modification (PSM) strategy for the sensitive and selective detection of dichloran (DCN). The results of fluorescence experiments demonstrate that the sensitivity of UiO-66-NH-PFPA (limit of detection, LOD = 0.478 μM) to DCN is nearly 10.

View Article and Find Full Text PDF

Constructing a Polyoxometalate-Based Metal-Organic Framework for Photocatalytic Oxidation of Thioethers to Sulfoxides Utilizing In Situ-Generated Superoxide Radicals.

Inorg Chem

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.

Developing new photocatalysts for the selective oxidation of thioethers to high-value-added sulfoxides under low-oxygen mild conditions is a promising but challenging strategy. Here, a new polyoxometalate-based metal-organic framework (POMOF), , was successfully synthesized, wherein continuous π···π stacking interactions and direct coordination bonds not only strengthen the framework's stability but also accelerate electron transfer. A series of experiments and theoretical studies, including control experiments, kinetic studies, electrochemical spectroscopic analyses, and electron paramagnetic resonance, revealed the synergistic catalytic effect among Co(II) metal centers, BWO, and the photosensitizer TPT.

View Article and Find Full Text PDF

The photocatalytic reduction of CO in water to produce fuels and chemicals is promising while challenging. However, many photocatalysts for accomplishing such challenging task usually suffer from unspecific catalytic active sites and the inefficient charge carrier's separation. Here, a site-specific single-atom Ni/TiO catalyst is reported by in situ topological transformation of Ni-Ti-EG bimetallic metal-organic frameworks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!