The recovery of gold (Au) from electronic waste (e-waste) has gained significant attention due to its high Au content and economic feasibility compared to natural ores. This study presents a facile, single-step approach to prepare the chitosan-thioglycolic acid composite crosslinked with glutaraldehyde (CS-TGA-GA) and demonstrates its unique capability for precious metal management, which is a less investigated application area for thiolated chitosan materials. The novel cost-effective biosorbent CS-TGA-GA demonstrated a very high adsorption capacity of 1351.9 ± 96 mg/g and selectivity for Au(III) from an acidic e-waste solution at pH 1 and 298 K. The high adsorption capacity and selectivity of the sorbent can be attributed to the abundance of -NH, -OH, and -SH groups present on its surface. Various characterizations, such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy, as well as sorption experiments, including pH, kinetic, and isotherm studies, were performed. The kinetic data align with a pseudo-second-order model and the isotherm data can be well expressed by the Freundlich model. The CS-TGA-GA composite effectively facilitated the conversion of Au(III) to Au(0), leading to the formation of Au nanoparticles that aggregated in the reaction vessel over time. Subsequently, the Au-loaded CS-TGA-GA underwent an incineration procedure, yielding recovered Au with a purity of 99.6%, as measured by X-ray fluorescence. In addition to its large uptake capacity, acid stability, and recyclability, the prepared sorbent showed a highly selective uptake of Au(III) ions in a solution containing various metal ions leached from waste printed circuit boards. These results highlight the potential of CS-TGA-GA as an adsorbent for the recovery of Au from e-waste leachate, thereby contributing to sustainable resource management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143282 | DOI Listing |
Chemosphere
September 2024
Division of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea; School of Chemical Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea. Electronic address:
Nutrients
December 2021
Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan.
Obesity is characterized as abnormal or excessive fat accumulation harmful to one's health, linked to hormonal imbalances, cardiovascular illness, and coronary artery disease. Since the disease stems mainly from overconsumption, studies have aimed to control intestinal absorption as a route for treatment. In this study, chitosan-thioglycolic acid (CT) was developed as a physical barrier in the gastrointestinal tracts to inhibit nutrient uptake.
View Article and Find Full Text PDFDrug Dev Ind Pharm
June 2021
Department of Pharmaceutics, Government College of Pharmacy, Bengaluru, India.
Objective: Parkinson disease (PD) is a chronic disorder of central nervous system mainly affecting the motor systems. The drug of choice to treat PD is Rasagiline Mesylate (RM) and it belongs to BCS class III drug. The objective of the present study was the preparation of transdermal drug delivery system for RM.
View Article and Find Full Text PDFRSC Adv
January 2019
ZhongAoHuiCheng Technology Co. No. 20 Kechuang Road, Economic and Technological Development Zone Beijing 100176 China.
A well-controlled powder sintering technique was used to fabricate porous Ti6Al4V scaffold. The thermosensitive chitosan thioglycolic acid (CS-TA) hydrogel was used as a carrier to inject recombinant human bone morphogenetic protein-2 (rhBMP-2) microspheres into pores of the Ti6Al4V scaffold at 37 °C, and then the porous Ti6Al4V/rhBMP-2 loaded hydrogel composite was obtained. The bare Ti6Al4V scaffold was used as the control.
View Article and Find Full Text PDFInt J Pharm
February 2018
Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
Low aqueous solubility and intestinal permeability limit the oral chemotherapy efficacy of paclitaxel (PTX). Traditional nanodrug delivery systems show excellent aqueous solubility improved ability of PTX. However, gastrointestinal (GI) mucus limits the improvement of intestinal permeability in traditional nanodrug delivery systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!