Two monocarbonyl dimethylamino curcuminoids, one derived from acetone (C3) and the second one from cyclohexane (C6), were synthesized aiming to study their photophysical properties and anticancer photodynamic potential. Compound C6 exhibited lower absorbance and fluorescence than C3. Photobleaching studies showed that C3 and C6 photostability behavior in DMSO differ significantly. C3 was completely photoconverted into a new species absorbing at lower wavelength than the parent compound, whereas, C6, upon a 30 min irradiation at λ = 440 nm with 15 mW/cm reached a photostationary phase where a smaller amount of the initial compound coexists with some photoproducts of higher and lower absorbance. Both compounds were able to generate significant amounts of ROS upon irradiation in an aqueous environment and exhibited successful intracellular localization in skin cancer cells (A431 cells). After dark cytotoxicity studies the concentrations of 5 μM and 1 μM for C3 and C6, respectively, were selected for the PDT assessment. C3 presented light dose-dependent photodynamic activity against A431 cells, resulting in 40 % cell viability after 12 min of light irradiation (440 nm, 15 mW/cm). On the other side, C6 showed a biphasic light dose PDT effect with cell viability gradually decreasing up to 50 % after 5 min of light exposure, and then increasing again after 8 and 12 min of light exposure. The photodynamic performance of C6 may provide a new insight into the development of PSs with reduced prolonged photosensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2024.113025 | DOI Listing |
Sci Adv
January 2025
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America.
Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection.
View Article and Find Full Text PDFNetwork
January 2025
Computer Science and Engineering, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India.
Skin cancer is one of the most prevalent and harmful forms of cancer, with early detection being crucial for successful treatment outcomes. However, current skin cancer detection methods often suffer from limitations such as reliance on manual inspection by clinicians, inconsistency in diagnostic accuracy, and a lack of personalized recommendations based on patient-specific data. In our work, we presented a Personalized Recommendation System to handle Skin Cancer at an early stage based on Hybrid Model (PRSSCHM).
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, 226001, China.
Arch Dermatol Res
January 2025
Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Hangzhou, China.
Studies have shown that patients who undergo heart transplantation (HTx) are at an increased risk for developing skin cancer. This condition can add physiological and psychological burden to patients. Therefore, assessing the incidence and identifying risk factors for skin cancer are crucial steps in its prevention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!