A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of novel imipridone derivatives with potent anti-cancer activities as human caseinolytic peptidase P (hClpP) activators. | LitMetric

Development of novel imipridone derivatives with potent anti-cancer activities as human caseinolytic peptidase P (hClpP) activators.

Bioorg Chem

Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Published: December 2024

Based on a clinically staged small molecular hClpP activator ONC201, a class of imipridone derivatives was designed and synthesized. These compounds were evaluated in a protease hydrolytic assay, as well as cell growth inhibition assays in three cancer cell lines, MIA PACA-2, HCT116, and MV4-11. A number of compounds that can more potently activate hClpP and more effectively inhibit cell growth in the three cancer cell lines than ONC201 were identified. The most potent compound, ZYZ-17, activated hClpP with an EC value of 0.24 µM and inhibited the growth of the three cancer cell lines with IC values of less than 10 nM. Mechanism studies for ZYZ-17 revealed that it potently activates cellular hClpP, efficiently induces the degradation of hClpP substrates, and robustly induces apoptosis in the three cancer cell lines. Furthermore, ZYZ-17 demonstrated a promising pharmacokinetic (PK) profile and exhibited highly potent in vivo antitumor activity in a pancreatic cancer MIA PACA-2 xenograft model in BALB/c nude mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.107765DOI Listing

Publication Analysis

Top Keywords

three cancer
16
cancer cell
16
cell lines
16
imipridone derivatives
8
cell growth
8
mia paca-2
8
growth three
8
hclpp
6
cell
6
cancer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!