A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using machine learning to predict bacteremia in urgent care patients on the basis of triage data and laboratory results. | LitMetric

Using machine learning to predict bacteremia in urgent care patients on the basis of triage data and laboratory results.

Am J Emerg Med

Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Department of Computer Science and Information Engineering, National Chi Nan University, Nantou 545301, Taiwan; Institute of Manufacturing Information and Systems, National Cheng Kung University. Tainan. 70101, Taiwan; Institute of information Science, Academia Sinica, Taipei, 115, Taiwan; Research Center for Information Technology Innovation. Academia Sinica, Taipei, 115. Taiwan. Electronic address:

Published: November 2024

Background: Despite advancements in antimicrobial therapies, bacteremia remains a life-threatening condition. Appropriate antimicrobials must be promptly administered to ensure patient survival. However, diagnosing bacteremia based on blood cultures is time-consuming and not something emergency department (ED) personnel are routinely trained to do.

Methods: This retrospective cohort study developed several machine learning (ML) models to predict bacteremia in adults initially presenting with fever or hypothermia, comprising logistic regression, random forest, extreme gradient boosting, support vector machine, k-nearest neighbor, multilayer perceptron, and ensemble models. Random oversampling and synthetic minority oversampling techniques were adopted to balance the dataset. The variables included demographic characteristics, comorbidities, immunocompromised status, clinical characteristics, subjective symptoms reported during ED triage, and laboratory data. The study outcome was an episode of bacteremia.

Results: Of the 5063 patients with initial fever or hypothermia from whom blood cultures were obtained, 128 (2.5 %) were diagnosed with bacteremia. We combined 36 selected variables and 10 symptoms subjectively reported by patients into features for analysis in our models. The ensemble model outperformed other models, with an area under the receiver operating characteristic curve (AUROC) of 0.930 and an F1-score of 0.735. The AUROC of all models was higher than 0.80.

Conclusion: The ML models developed effectively predicted bacteremia among febrile or hypothermic patients in the ED, with all models demonstrating high AUROC values and rapid processing times. The findings suggest that ED clinicians can effectively utilize ML techniques to develop predictive models for addressing clinical challenges.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajem.2024.08.045DOI Listing

Publication Analysis

Top Keywords

machine learning
8
predict bacteremia
8
blood cultures
8
models
8
fever hypothermia
8
bacteremia
6
learning predict
4
bacteremia urgent
4
urgent care
4
patients
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!