3D printing of strontium-enriched biphasic calcium phosphate scaffolds for bone regeneration.

J Mech Behav Biomed Mater

Bioceramics Laboratory, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo - UNIFESP, 12231-280, São José dos Campos, SP, Brazil; Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA. Electronic address:

Published: December 2024

Calcium phosphate (CaP) scaffolds doping with therapeutic ions are one of the focuses of recent bone tissue engineering research. Among the therapeutic ions, strontium stands out for its role in bone remodeling. This work reports a simple method to produce Sr-doped 3D-printed CaP scaffolds, using Sr-doping to induce partial phase transformation from β-tricalcium phosphate (β-TCP) to hydroxyapatite (HA), resulting in a doped biphasic calcium phosphate (BCP) scaffold. Strontium carbonate (SrCO) was incorporated in the formulation of the 3D-printing ink, studying β-TCP:SrO mass ratios of 100:0, 95:5, and 90:10 (named as β-TCP, β-TCP/5-Sr, and β-TCP/10-Sr, respectively). Adding SrCO in the 3D-printing ink led to a slight increase in viscosity but did not affect its printability, resulting in scaffolds with a high printing fidelity compared to the computational design. Interestingly, Sr was incorporated into the lattice structure of the scaffolds, forming hydroxyapatite (HA). No residual SrO or SrCO were observed in the XRD patterns of any composition, and HA was the majority phase of the β-TCP/10-Sr scaffolds. The addition of Sr increased the compression strength of the scaffolds, with both β-TCP/5-Sr and β-TCP/10-Sr performing better than the β-TCP. Overall, β-TCP/5-Sr presented higher mineralized nodules and mechanical strength, while β-TCP scaffolds presented superior cell viability. The incorporation of SrCO in the ink formulation is a viable method to obtain Sr-BCP scaffolds. Thus, this approach could be explored with other CaP scaffolds aiming to optimize their performance and the addition of alternative therapeutic ions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106717DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
12
cap scaffolds
12
therapeutic ions
12
scaffolds
10
biphasic calcium
8
3d-printing ink
8
β-tcp β-tcp/5-sr
8
β-tcp/5-sr β-tcp/10-sr
8
printing strontium-enriched
4
strontium-enriched biphasic
4

Similar Publications

Background: Limitations to using the knee as donor cartilage include cartilage thickness mismatch and donor site morbidity. Using the radial head as donor autograft for capitellar lesions may allow for local graft harvest without distant donor site morbidity. The purpose of this study is to demonstrate the feasibility of performing local osteochondral autograft transfer from the nonarticular cartilaginous rim of the radial head to the capitellum.

View Article and Find Full Text PDF

Calcium phosphate formation and deposition in ischemic neurons.

PLoS One

January 2025

Biomedical Engineering Department, Northwestern University, Evanston, IL, United States of America.

Ischemic stroke causes acute brain calcium phosphate (CaP) deposition, a process involving primarily the injured neurons. Whereas the adverse impact of CaP deposition on the brain structure and function has been recognized, the underlying mechanisms remain poorly understood. This investigation demonstrated that the neuron-expressed, plasma membrane-associated Ca2+-binding proteins annexin (Anx) A2, AnxA5, AnxA6, and AnxA7 contributed to neuronal CaP deposition in the mouse model of ischemic stroke.

View Article and Find Full Text PDF

Nowadays, most of the newly developed active pharmaceutical ingredients (APIs) consist of cohesive particles with a mean particle size of <100μm, a wide particle size distribution (PSD) and a tendency to agglomerate, therefore they are difficult to handle in continuous manufacturing (CM) lines. The current paper focuses on the impact of various glidants on the bulk properties of difficult-to-handle APIs. Three challenging powders were included: two extremely cohesive APIs (acetaminophen micronized (APAPμ) and metoprolol tartrate (MPT)) which previously have shown processing issues during different stages of the continuous direct compression (CDC)-line and a spray dried placebo (SD) powder containing hydroxypropylmethyl cellulose (HPMC), known for its sub-optimal flow with a high specific surface area (SSA) and low density.

View Article and Find Full Text PDF

The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.

View Article and Find Full Text PDF

Aim: 3D-printed scaffolds loaded with healing directed agents could be employed for better treatment outcome in regenerative dentistry. The aim of this study was to fabricate and characterize simple 3D-printed poly lactic acid (PLA) scaffolds coated with nanoHydroxyapatite (nHA), Naringin (NAR), or their combination, and testing their morphological, chemical, mechanical, antibacterial, biocompatible and bioactive properties.

Methodology: Two variants pore sizes, 300 and 700 μm, of 3D-printed PLA disc scaffolds measuring (10 × 1 mm) were fabricated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!