Antibiotic intermediates and antibiotics synergistically promote the development of multiple antibiotic resistance in antibiotic production wastewater.

J Hazard Mater

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China. Electronic address:

Published: November 2024

Antibiotic resistance (AR) is a major public health concern. Antibiotic intermediates (AIs) used in the production of semisynthetic antibiotics have the same bioactive structure as parent antibiotics and synthetic antibiotic production wastewater usually contains high concentrations of residual AIs; however, the effects of AIs and their interactive effects with antibiotics on the emergence of AR are unknown. In this study, antibiotic-sensitive E. coli K12 was exposed to five types of β-lactam AIs and their parent antibiotic ampicillin to analyze their impact on the evolution of multiple AR. The results indicated that AI 6-APA inhibits bacterial growth and stimulates the production of reactive oxygen species, as well as induces AR and antibiotic persistence like the parent antibiotic AMP. Combined exposure to 6-APA and AMP synergistically stimulated the induction of multiple AR and antibiotic persistence. The resistance mutation frequency increased up to 6.1 × 10-fold under combined exposure and the combination index reached 1326.5, indicating a strong synergy of 6-APA and AMP. Phenotypic and genotypic analyses revealed that these effects were associated with the overproduction of reactive oxygen species, enhanced stress response signatures, and activation of efflux pumps. These findings provide evidence and mechanistic insights into AR induction by AIs in antibiotic production wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135601DOI Listing

Publication Analysis

Top Keywords

antibiotic production
12
production wastewater
12
antibiotic
11
antibiotic intermediates
8
multiple antibiotic
8
antibiotic resistance
8
parent antibiotic
8
reactive oxygen
8
oxygen species
8
antibiotic persistence
8

Similar Publications

Bovine mastitis is the most widespread disease that causes financial loss in the dairy industry. Staphylococcus aureus is a well-researched multidrug-resistant opportunistic bacterium that is frequently linked to subclinical mastitis and causes significant economic losses. A further problem in the management of S.

View Article and Find Full Text PDF

Integration of paper-based colorimetric microdevice and magnetic nanoparticles affinity for high-throughput capture of antimicrobial resistance-reversing agent from complex natural products.

Biosens Bioelectron

December 2024

Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China. Electronic address:

Efficient analysis of active ingredient in complex natural products is crucial for drug discovery, but developing a simple method for this is challenging. The discovery of drugs against bacterial resistance is urgent because drug-resistant bacteria produce β-lactamases, which inactivate antibiotics and increase infection risks, particularly the AmpC β-lactamase. Here, an integrated analytical model based on colorimetric sensing and magnetic nanoparticles (MNPs) affinity chromatography was developed for screening AmpC β-lactamase inhibitors.

View Article and Find Full Text PDF

Effect of catalase on CPC production during fermentation of Acremonium chrysogenum.

Bioresour Bioprocess

January 2025

Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.

Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer.

View Article and Find Full Text PDF

Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).

View Article and Find Full Text PDF

Cefixime (CFX) is a potent antibiotic against gram-positive and gram-negative bacteria that resists degradation and typical removal procedures. This research aimed to synthesize a modified AgCuFeO@GO nanoparticle electrode with anchored MnO for removing CFX by three-dimensional electrochemical oxidation. The physical and chemical characteristics of the nanocomposite were evaluated using various techniques, including FESEM, XRD, EDS-mapping, FTIR, BET, VSM, and TGA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!