Cholesterol homeostasis is essential for healthy mammalian cells and dysregulation of cholesterol metabolism contributes to the pathogenesis of various diseases including cancer. Cancer cells are dependent on cholesterol. Malignant progression is associated with high cellular demand for cholesterol, and extracellular cholesterol uptake is often elevated in cancer cell to meet its metabolic needs. Tumors take up cholesterol from the blood stream through their vasculature. Breast cancer grows in, and ovarian cancer metastasizes into fatty tissue that provides them with an additional source of cholesterol. High levels of extracellular cholesterol are beneficial for tumors whose cancer cells master the uptake of extracellular cholesterol. In this review we concentrate on cholesterol uptake mechanisms, receptor-mediated endocytosis and macropinocytosis, and how these are utilized and manipulated by cancer cells to overcome their possible intrinsic or pharmacological limitations in cholesterol synthesis. We focus especially on the involvement of lysosomes in cholesterol uptake. Identifying the vulnerabilities of cholesterol metabolism and manipulating them could provide novel efficient therapeutic strategies for treatment of cancers that manifest dependency for extracellular cholesterol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378638PMC
http://dx.doi.org/10.1186/s13046-024-03172-yDOI Listing

Publication Analysis

Top Keywords

extracellular cholesterol
20
cholesterol uptake
16
cholesterol
15
cancer cells
12
cholesterol metabolism
8
cancer
7
uptake
5
review extracellular
4
uptake breast
4
breast ovarian
4

Similar Publications

Analysis of time-of-flight secondary ion mass spectrometry data of human skin treated with diclofenac using sparse autoencoder.

Anal Bioanal Chem

December 2024

Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.

Methods that facilitate molecular identification and imaging are required to evaluate drug penetration into tissues. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), which has high spatial resolution and allows 3D distribution imaging of organic materials, is suitable for this purpose. However, the complexity of ToF-SIMS data, which includes nonlinear factors, makes interpretation challenging.

View Article and Find Full Text PDF

Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation.

View Article and Find Full Text PDF

Background: Cholelithiasis areis a common digestive system disorder, with cholesterol gallstones being the most prevalent type. Gallstones lead to many severe complications, posing a significant burden on global healthcare systems. Many studies have shown associations between biliary microbiota, gallbladder immune microenvironment, and gallstone formation.

View Article and Find Full Text PDF

Niemann Pick Disease Type C (NP-C), a rare neurogenetic disease with no known cure, is caused by mutations in the cholesterol trafficking protein NPC1. Brain microvascular endothelial cells (BMEC) are thought to play a critical role in the pathogenesis of several neurodegenerative diseases; however, little is known about how these cells are altered in NP-C. In this study, we investigated how NPC1 inhibition perturbs BMEC metabolism in human induced pluripotent stem cell-derived BMEC (hiBMEC).

View Article and Find Full Text PDF

Background: Pulsatilla chinensis (PC) is a traditional Chinese medicine (TCM) known for its beneficial activities. It has been historically used to treat dysentery, vaginal trichomoniasis, bacterial infections, and malignant tumors. The therapeutic potential of PC in the management of hypercholesterolemia remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!