Exocyst stimulates multiple steps of exocytic SNARE complex assembly and vesicle fusion.

Nat Struct Mol Biol

School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.

Published: September 2024

Exocyst is a large multisubunit tethering complex essential for targeting and fusion of secretory vesicles in eukaryotic cells. Although the assembled exocyst complex has been proposed to tether vesicles to the plasma membrane and activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion, the key biochemical steps that exocyst stimulates in SNARE-mediated fusion are undetermined. Here we use a combination of single-molecule and bulk fluorescence assays to investigate the roles of purified octameric yeast exocyst complexes in a reconstituted yeast exocytic SNARE assembly and vesicle fusion system. Exocyst had stimulatory roles in multiple distinct steps ranging from SNARE protein activation to binary and ternary complex assembly. Importantly, exocyst had a downstream role in driving membrane fusion and full content mixing of vesicle lumens. Our data suggest that exocyst provides extensive chaperoning functions across the entire process of SNARE complex assembly and fusion, thereby governing exocytosis at multiple steps.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-024-01388-2DOI Listing

Publication Analysis

Top Keywords

complex assembly
12
exocyst
8
exocyst stimulates
8
multiple steps
8
exocytic snare
8
snare complex
8
assembly vesicle
8
vesicle fusion
8
membrane fusion
8
fusion
7

Similar Publications

A general strategy towards activatable nanophotosensitizer for phototoxicity-free photodynamic therapy.

Theranostics

January 2025

Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China.

Photodynamic therapy (PDT) has gained widespread attention in cancer treatment, but it still faces clinical problems such as skin phototoxicity. Activatable photosensitizers offer a promising approach to addressing this issue. However, several significant hurdles need to be overcome, including developing effective activation strategies and achieving the optimal balance between photodynamic effects and related side effects.

View Article and Find Full Text PDF

Nanoscale self-assembly and water retention properties of silk fibroin-riboflavin hydrogel.

J Chem Phys

January 2025

Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India.

Silk-fibroin hydrogels have gained considerable attention in recent years for their versatile biomedical applications. The physical properties of a complex hydrogel, comprising silk fibroin and riboflavin, surpass those of the silk fibroin-hydrogel without additives. This study investigates silk fibroin-riboflavin (silk-RIB) hydrogel at the atomistic level to uncover molecular structures and chemical characteristics specific to silk fibroin and riboflavin molecules in an aqueous medium.

View Article and Find Full Text PDF

Pathogenesis of Toxoplasma gondii in the intermediate host is based on the tachyzoite ability to divide rapidly to produce significant amount of daughter cells in a reduce time frame. The regulation of the cell-cycle specific expression program is therefore key to their proliferation. Transcriptional regulation has a crucial role in establishing this expression program and transcription factors regulates many aspects of tachyzoite cell cycle.

View Article and Find Full Text PDF

Phase separation of initiation hubs on cargo is a trigger switch for selective autophagy.

Nat Cell Biol

January 2025

Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Autophagy is a key cellular quality control mechanism. Nutrient stress triggers bulk autophagy, which nonselectively degrades cytoplasmic material upon formation and liquid-liquid phase separation of the autophagy-related gene 1 (Atg1) complex. In contrast, selective autophagy eliminates protein aggregates, damaged organelles and other cargoes that are targeted by an autophagy receptor.

View Article and Find Full Text PDF

VCP regulates early tau seed amplification via specific cofactors.

Mol Neurodegener

January 2025

Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States.

Background: Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. Seeding into the complex cytoplasmic milieu happens within hours, implying the existence of unknown factors that regulate this process.

Methods: We used proximity labeling to identify proteins that control seed amplification within 5 h of seed exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!