The Speech-to-Speech Synchronization test is a powerful tool in assessing individuals' auditory-motor synchronization ability, namely the ability to synchronize one's own utterances to the rhythm of an external speech signal. Recent studies using the test have revealed that participants fall into two distinct groups-high synchronizers and low synchronizers-with significant differences in their neural (structural and functional) underpinnings and outcomes on several behavioral tasks. Therefore, it is critical to assess the universality of the population-level distribution (indicating two groups rather than a normal distribution) across populations of speakers. Here we demonstrate that the previous results replicate with a Norwegian-speaking population, indicating that the test is generalizable beyond previously tested populations of native English- and German-speakers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332004 | PMC |
http://dx.doi.org/10.1038/s44271-023-00049-2 | DOI Listing |
Front Neurol
January 2025
Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.
Walking ability is essential for human survival and health. Its basic rhythm is mainly generated by the central pattern generator of the spinal cord. The rhythmic stimulation of music to the auditory center affects the cerebral cortex and other higher nerve centers, and acts on the central pattern generator.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.
Perception and production of music and speech rely on auditory-motor coupling, a mechanism which has been linked to temporally precise oscillatory coupling between auditory and motor regions of the human brain, particularly in the beta frequency band. Recently, brain imaging studies using magnetoencephalography (MEG) have also shown that accurate auditory temporal predictions specifically depend on phase coherence between auditory and motor cortical regions. However, it is not yet clear whether this tight oscillatory phase coupling is an intrinsic feature of the auditory-motor loop, or whether it is only elicited by task demands.
View Article and Find Full Text PDFJ Speech Lang Hear Res
January 2025
Department of Speech-Language-Hearing Sciences and Masonic Institute for the Developing Brain, The University of Minnesota, Twin Cities.
Purpose: Stuttering is a neurodevelopmental disorder that disrupts the timing and rhythmic flow of speech production. There is growing evidence indicating that abnormal interactions between the auditory and motor cortices contribute to the development of stuttering. The present study investigated speech auditory-motor synchronization in stuttering adults and the influential factors behind it as compared to individuals without stuttering.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium.
Brain Sci
October 2024
Music and Health Science Research Collaboratory, University of Toronto, Toronto, ON M5S 1C5, Canada.
Background: Humans exhibit a remarkable ability to synchronize their actions with external auditory stimuli through a process called auditory-motor or rhythmic entrainment. Positive effects of rhythmic entrainment have been demonstrated in adults with neurological movement disorders, yet the neural substrates supporting the transformation of auditory input into timed rhythmic motor outputs are not fully understood. We aimed to systematically map and synthesize the research on the neural correlates of auditory-motor entrainment and synchronization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!