We propose a framework integrating insights from computational social science, political, and social psychology to explain how extreme polarization can occur in deeply divided societies. Extreme polarization in a society emerges through a dynamic and complex process where societal, group, and individual factors interact. Dissent at different levels of analysis represents the driver of this process, where societal-level ideological dissent divides society into opposing camps, each with contrasting collective narratives. Within these opposing camps, further dissent leads to the formation of splinter factions and radical cells-sub-groups with increasingly extreme views. At the group level, collective narratives underpinning group identity become more extreme as society fragments. At the individual level, this process involves the internalization of an extreme group narrative and norms sanctioning radical behavior. The intense bonding within these groups and the convergence of personal and group identities through identity fusion increase the likelihood of radical group behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327288 | PMC |
http://dx.doi.org/10.1038/s44271-024-00125-1 | DOI Listing |
Appl Environ Microbiol
January 2025
Clinical Infection Department, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom.
Unlabelled: Remote polar regions offer unique opportunities and significant challenges for antimicrobial resistance research in a near-pristine environment. While core microbiology techniques continue to have an important role in supporting environmental research, the severe cold climate presents considerable challenges to laboratory research. We explore adaptations required for core bacteriology investigations in polar regions on an unsupported remote expedition c.
View Article and Find Full Text PDFNat Commun
January 2025
Chair of Data Science in Earth Observation, Department of Aerospace and Geodesy, Technical University of Munich, Munich, Germany.
A major uncertainty in predicting the behaviour of marine-terminating glaciers is ice dynamics driven by non-linear calving front retreat, which is poorly understood and modelled. Using 124919 calving front positions for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, generated with deep learning, we identify pervasive calving front retreats for non-surging glaciers over the past 38 years. We observe widespread seasonal cycles in calving front position for over half of the glaciers.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Av. Antônio Carlos, 6627, Pampulha, 31270-000 Belo Horizonte, MG, Brazil.
Polar marine macroalgae thrive in extreme conditions, often displaying geographic isolation and high degree of endemism. The "phycosphere" refers to the zone around the algae inhabited by microrganisms. Our study used DNA metabarcoding to survey the eukaryotic communities associated with seven seaweed species obtained at King George Island (South Shetland Islands, maritime Antarctic), including two Rhodophyta, two Chlorophyta and three Phaeophyceae.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.
View Article and Find Full Text PDFSci Data
January 2025
State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Anisarchus medius (Reinhardt, 1837) is a widely distributed Arctic fish, serving as an indicator of climate change impacts on coastal Arctic ecosystems. This study presents a chromosome-level genome assembly for A. medius using PacBio sequencing and Hi-C technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!