Opportunistic plant records provide a rapidly growing source of spatiotemporal plant observation data. Here, we used such data to explore the question whether they can be used to detect changes in species phenologies. Examining 19 herbaceous and one woody plant species in two consecutive years across Europe, we observed significant shifts in their flowering phenology, being more pronounced for spring-flowering species (6-17 days) compared to summer-flowering species (1-6 days). Moreover, we show that these data are suitable to model large-scale relationships such as "Hopkins' bioclimatic law" which quantifies the phenological delay with increasing elevation, latitude, and longitude. Here, we observe spatial shifts, ranging from -5 to 50 days per 1000 m elevation to latitudinal shifts ranging from -1 to 4 days per degree northwards, and longitudinal shifts ranging from -1 to 1 day per degree eastwards, depending on the species. Our findings show that the increasing volume of purely opportunistic plant observation data already provides reliable phenological information, and therewith can be used to support global, high-resolution phenology monitoring in the face of ongoing climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332049PMC
http://dx.doi.org/10.1038/s44185-024-00037-7DOI Listing

Publication Analysis

Top Keywords

opportunistic plant
12
shifts ranging
12
plant observation
8
observation data
8
ranging days
8
species
5
plant observations
4
observations reveal
4
reveal spatial
4
spatial temporal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!