Gradient-induced instability in tumour spheroids unveils the impact of microenvironmental nutrient changes.

Sci Rep

Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. Le V. Tecchio 80, 80125, Naples, Italy.

Published: September 2024

Tumours often display invasive behaviours that induce fingering, branching and fragmentation processes. The phenomenon, known as diffusional instability, is driven by differential cell proliferation, migration, and death due to the presence of metabolite and catabolite concentration gradients. An understanding of the intricate dynamics of this spatially heterogeneous process plays a key role in the investigation of tumour growth and invasion. In this study, we developed an in vitro tumour invasion assay to investigate cell invasiveness in tumour spheroids under a chemotactic stimulus. Our method, employing tumour spheroids seeded in a 3D collagen gel within a microfluidic chemotaxis chamber, focuses on the role of diffusive gradients. Using Time-Lapse Microscopy, the dynamic evolution of tumour spheroids was monitored in real-time, providing a comprehensive view of the morphological changes and cell migration patterns under different chemotactic conditions. Specifically, we explored the impact of fetal bovine serum (FBS) gradients on the behaviour of CT26 mouse colon carcinoma cells and compared the effects of varying FBS concentrations to two isotropic control conditions. Furthermore, a finite element in silico model was developed to quantify the diffusive flow of nutrients in the chemotaxis chamber and obtain a detailed understanding of tumour dynamics. Our findings reveal that the presence of a chemotactic gradient significantly influences tumour invasiveness, with higher concentrations of nutrients associated with increased cancer growth and cell migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379688PMC
http://dx.doi.org/10.1038/s41598-024-69570-6DOI Listing

Publication Analysis

Top Keywords

tumour spheroids
16
tumour
8
chemotaxis chamber
8
cell migration
8
gradient-induced instability
4
instability tumour
4
spheroids
4
spheroids unveils
4
unveils impact
4
impact microenvironmental
4

Similar Publications

Background: Patients with diffuse anaplastic Wilms tumor (DAWT) experience relatively poor oncologic outcomes. Previous work has described mechanisms of telomerase upregulation in DAWT, posing a potential therapeutic target.

Methods: We assessed in vitro sensitivity to vincristine, irinotecan, and telomerase-targeting drug 6-thio-2'-deoxyguanosine (6 dG) in DAWT cell lines WiT49 and PDM115 and in spheroids derived from cell lines and four DAWT patient-derived xenografts (PDX).

View Article and Find Full Text PDF

Objective: This study investigated metformin as a sensitizer for radiotherapy in oral squamous cell carcinoma (OSCC) to reduce the radiation intensity. It evaluated the drug's effect on Chromatin Assembly Factor-1 (CAF-1) expression, whose high levels correlate with worse prognosis of this cancer.

Methods: The effects of metformin, alone and with radiotherapy, were evaluated on CAL27 (HPV-) and SCC154 (HPV+) OSCC cells.

View Article and Find Full Text PDF
Article Synopsis
  • Developing 3D cell cultures from glioma cell lines can enhance tumor therapy research by mimicking patient tumors more closely than traditional 2D cultures.
  • The study focused on optimizing parameters for high-throughput screening, analyzing how initial cell numbers and culture time affect spheroid growth and viability.
  • Key findings showed that fewer initial cells led to better growth in spheroids, highlighting the potential for improved testing of treatments like temozolomide and radiation in more representative tumor models.
View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood.

View Article and Find Full Text PDF

Co-culture of natural killer cells and tumor spheroids on a heterogeneous multilayer paper stack.

J Zhejiang Univ Sci B

December 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.

Multilayer paper-based cell culture, as an in vitro three-dimensional (3D) cell culture method, has been frequently used to research drug bioavailability, therapeutic efficacy, and dose-limiting toxicity in malignant tumors. This paper proposes a heterogenous multilayer paper stacking co-culture system to establish a model of natural killer (NK) cells moving through the endothelium layer and attacking tumor spheroids. This system consists of three layers: a bottom tumor-spheroid layer, a middle invasion layer, and a top endothelium layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!