Tumours often display invasive behaviours that induce fingering, branching and fragmentation processes. The phenomenon, known as diffusional instability, is driven by differential cell proliferation, migration, and death due to the presence of metabolite and catabolite concentration gradients. An understanding of the intricate dynamics of this spatially heterogeneous process plays a key role in the investigation of tumour growth and invasion. In this study, we developed an in vitro tumour invasion assay to investigate cell invasiveness in tumour spheroids under a chemotactic stimulus. Our method, employing tumour spheroids seeded in a 3D collagen gel within a microfluidic chemotaxis chamber, focuses on the role of diffusive gradients. Using Time-Lapse Microscopy, the dynamic evolution of tumour spheroids was monitored in real-time, providing a comprehensive view of the morphological changes and cell migration patterns under different chemotactic conditions. Specifically, we explored the impact of fetal bovine serum (FBS) gradients on the behaviour of CT26 mouse colon carcinoma cells and compared the effects of varying FBS concentrations to two isotropic control conditions. Furthermore, a finite element in silico model was developed to quantify the diffusive flow of nutrients in the chemotaxis chamber and obtain a detailed understanding of tumour dynamics. Our findings reveal that the presence of a chemotactic gradient significantly influences tumour invasiveness, with higher concentrations of nutrients associated with increased cancer growth and cell migration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379688 | PMC |
http://dx.doi.org/10.1038/s41598-024-69570-6 | DOI Listing |
J Pediatr Surg
December 2024
Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. Electronic address:
Background: Patients with diffuse anaplastic Wilms tumor (DAWT) experience relatively poor oncologic outcomes. Previous work has described mechanisms of telomerase upregulation in DAWT, posing a potential therapeutic target.
Methods: We assessed in vitro sensitivity to vincristine, irinotecan, and telomerase-targeting drug 6-thio-2'-deoxyguanosine (6 dG) in DAWT cell lines WiT49 and PDM115 and in spheroids derived from cell lines and four DAWT patient-derived xenografts (PDX).
Pathologica
December 2024
Department of Pharmacy, University of Salerno, Italy.
Objective: This study investigated metformin as a sensitizer for radiotherapy in oral squamous cell carcinoma (OSCC) to reduce the radiation intensity. It evaluated the drug's effect on Chromatin Assembly Factor-1 (CAF-1) expression, whose high levels correlate with worse prognosis of this cancer.
Methods: The effects of metformin, alone and with radiotherapy, were evaluated on CAL27 (HPV-) and SCC154 (HPV+) OSCC cells.
Front Bioeng Biotechnol
December 2024
Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany.
Int J Oral Sci
January 2025
Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile.
Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
December 2024
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.
Multilayer paper-based cell culture, as an in vitro three-dimensional (3D) cell culture method, has been frequently used to research drug bioavailability, therapeutic efficacy, and dose-limiting toxicity in malignant tumors. This paper proposes a heterogenous multilayer paper stacking co-culture system to establish a model of natural killer (NK) cells moving through the endothelium layer and attacking tumor spheroids. This system consists of three layers: a bottom tumor-spheroid layer, a middle invasion layer, and a top endothelium layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!