Human Tooth Crack Image Analysis with Multiple Deep Learning Approaches.

Ann Biomed Eng

Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.

Published: September 2024

Tooth cracks, one of the most common dental diseases, can result in the tooth falling apart without prompt treatment; dentists also have difficulty locating cracks, even with X-ray imaging. Indocyanine green (ICG) assisted near-infrared fluorescence (NIRF) dental imaging technique can solve this problem due to the deep penetration of NIR light and the excellent fluorescence characteristics of ICG. This study extracted 593 human cracked tooth images and 601 non-cracked tooth images from NIR imaging videos. Multiple imaging analysis methods such as classification, object detection, and super-resolution were applied to the dataset for cracked image analysis. Our results showed that machine learning methods could help analyze tooth crack efficiently: the tooth images with cracks and without cracks could be well classified with the pre-trained residual network and squeezenet1_1 models, with a classification accuracy of 88.2% and 94.25%, respectively; the single shot multi-box detector (SSD) was able to recognize cracks, even if the input image was at a different size from the original cracked image; the super-resolution (SR) model, SR-generative adversarial network demonstrated enhanced resolution of crack images using high-resolution concrete crack images as the training dataset. Overall, deep learning model-assisted human crack analysis improves crack identification; the combination of our NIR dental imaging system and deep learning models has the potential to assist dentists in crack diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-024-03615-9DOI Listing

Publication Analysis

Top Keywords

deep learning
12
tooth images
12
tooth crack
8
image analysis
8
dental imaging
8
cracked image
8
crack images
8
crack
7
tooth
6
cracks
5

Similar Publications

Graph convolution network-based eeg signal analysis: a review.

Med Biol Eng Comput

January 2025

School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China.

With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN.

View Article and Find Full Text PDF

A review of state-of-the-art resolution improvement techniques in SPECT imaging.

EJNMMI Phys

January 2025

Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.

Single photon emission computed tomography (SPECT), a technique capable of capturing functional and molecular information, has been widely adopted in theranostics applications across various fields, including cardiology, neurology, and oncology. The spatial resolution of SPECT imaging is relatively poor, which poses a significant limitation, especially the visualization of small lesions. The main factors affecting the limited spatial resolution of SPECT include projection sampling techniques, hardware and software.

View Article and Find Full Text PDF

Strategies to increase the robustness of microbial cell factories.

Adv Biotechnol (Singap)

March 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

Engineering microbial cell factories have achieved much progress in producing fuels, natural products and bulk chemicals. However, in industrial fermentation, microbial cells often face various predictable and stochastic disturbances resulting from intermediate metabolites or end product toxicity, metabolic burden and harsh environment. These perturbances can potentially decrease productivity and titer.

View Article and Find Full Text PDF

Purpose: Lumbar spinal stenosis (LSS) is a frequently occurring condition defined by narrowing of the spinal or nerve root canal due to degenerative changes. Physicians use MRI scans to determine the severity of stenosis, occasionally complementing it with X-ray or CT scans during the diagnostic work-up. However, manual grading of stenosis is time-consuming and induces inter-reader variability as a standardized grading system is lacking.

View Article and Find Full Text PDF

Objectives: We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification.

Methods: The MRI features were extracted for molecular subgroups by a novel multi-parameter convolutional neural network (CNN) called Bi-ResNet-MB. Then, MR features were used to establish a prognosis model based on XGBoost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!