Tunneling nanotubes (TNTs) are thin, membranous protrusions that connect cells and allow for the transfer of various molecules, including proteins, organelles, and genetic material. TNTs have been implicated in a wide range of biological processes, including intercellular communication, drug resistance, and viral transmission. In cancer, they have been investigated more deeply over the past decade for their potentially pivotal role in tumor progression and metastasis. TNTs, as cell contact-dependent protrusions that form at short and long distances, enable the exchange of signaling molecules and cargo between cancer cells, facilitating communication and coordination of their actions. This coordination induces a synchronization that is believed to mediate the TNT-directed evolution of drug resistance by allowing cancer cells to coordinate, including through direct expulsion of chemotherapeutic drugs to neighboring cells. Despite advances in the overall field of TNT biology since the first published report of their existence in 2004 (Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH, Science. 303:1007-10, 2004), the mechanisms of formation and components vital for the function of TNTs are complex and not yet fully understood. However, several factors have been implicated in their regulation, including actin polymerization, microtubule dynamics, and signaling pathways. The discovery of TNT-specific components that are necessary and sufficient for their formation, maintenance, and action opens a new potential avenue for drug discovery in cancer. Thus, targeting TNTs may offer a promising therapeutic strategy for cancer treatment. By disrupting TNT formation or function, it may be possible to inhibit tumor growth and metastasis and overcome drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-62036-2_15DOI Listing

Publication Analysis

Top Keywords

drug resistance
12
tunneling nanotubes
8
cancer cells
8
tnts
5
cancer
5
nanotubes implications
4
implications chemoresistance
4
chemoresistance tunneling
4
nanotubes tnts
4
tnts thin
4

Similar Publications

Taylorella equigenitalis is the causative agent of sexually transmitted contagious equine metritis. Infections manifest as cervicitis, vaginitis and endometritis and cause temporary infertility and miscarriages of mares. While previous studies have analyzed this organism for various parameters, the evolutionary dynamics of this pathogen, including the emergence of antibiotic resistance, remains unresolved.

View Article and Find Full Text PDF

Introduction: Tackling the inertia of growing threat of antimicrobial resistance (AMR) requires changes in how antibiotics are prescribed and utilized. The monitoring of antimicrobial prescribing in hospitals is a critical component in optimizing antibiotic use. Point prevalence surveys (PPSs) enable the surveillance of antibiotic prescribing at the patient level in small hospitals that lack the resources to establish antimicrobial stewardship programs (ASP).

View Article and Find Full Text PDF

Epigenetic processes are the critical events in carcinogenesis. Histone modification plays a crucial role in gene expression regulation, where histone deacetylases (HDACs) are key players in epigenetic processes. Inhibiting HDACs has shown promise in modern cancer therapy.

View Article and Find Full Text PDF

Progress in antileishmanial drugs: Mechanisms, challenges, and prospects.

PLoS Negl Trop Dis

January 2025

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.

Leishmaniasis, a neglected tropical disease caused by Leishmania parasites, continues to pose global health challenges. Current treatments face issues like resistance, safety, efficacy, and cost. This review covers the discovery, mechanisms of action, clinical applications, and limitations of key antileishmanial agents: pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine.

View Article and Find Full Text PDF

Repellency and toxicity of long-lasting insecticide-treated bed nets (LLINs) to bed bugs.

PLoS One

January 2025

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Vector control is essential for eliminating malaria, a vector-borne parasitic disease responsible for over half a million deaths annually. Success of vector control programs hinges on community acceptance of products like long-lasting insecticide-treated nets (LLINs). Communities in malaria-endemic regions often link LLIN efficacy to their ability to control indoor pests such as bed bugs (Cimex lectularius L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!