Lead ions (Pb) are heavy metal environmental pollutants that can significantly impact biological health. In this study, the synthesis of a ternary nanocomposite, ErVO/P@g-CN/SnS, was achieved using a combination of hydrothermal synthesis and mechanical grinding. The as-fabricated photoelectrochemical (PEC) sensor was found to be an ideal substrate for Pb detection with high sensitivity and reliability. The ErVO/P@g-CN/SnS/FTO was selected as the substrate because of its remarkable and reliable photocurrent response. The Pb sensor exhibited a low detection limit of 0.1 pM and a broad linear range of 0.002-0.2 nM. Moreover, the sensor exhibited outstanding stability, selectivity, and reproducibility. In real-time applications, it exhibited stable recovery and a low relative standard deviation, ensuring reliable and accurate measurements. The as-prepared PEC sensor was highly stable for the detection of Pb in different water samples. This promising characteristic highlights its significant potential for use in the detection of environmental pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124892DOI Listing

Publication Analysis

Top Keywords

lead ions
8
water samples
8
environmental pollutants
8
pec sensor
8
sensor exhibited
8
detection
5
selective stable
4
stable visible-light-prompted
4
visible-light-prompted scavenger-free
4
scavenger-free photoelectrochemical
4

Similar Publications

Recycling of protein-rich environmental wastes and obtaining more valuable products from these recycled products is a topic of interest for researchers. This study aims to produce, purify, and characterize the physicochemical and structural properties of the protease enzyme produced from Brevibacillus agri SAR25 using salmon fish waste as substrate and also to evaluate the effect of protease on the chicken feather, enzyme-ligand interactions, and active site surface area. The production of protease was optimum on 50 g/L fish waste, pH 8, 40 °C, 96 h, and 150 rpm.

View Article and Find Full Text PDF

Investigating the interaction between calcium signaling and ferroptosis for novel cancer treatment.

Phytomedicine

January 2025

Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China. Electronic address:

Article Synopsis
  • Drug resistance in cancer is increasing, highlighting the need for new therapeutic targets, particularly through ion interference strategies involving calcium ions (Ca).
  • The study investigates the link between calcium ions and ferroptosis (iron-induced cell death), suggesting that disrupted calcium balance could lead to increased ferroptosis in cancer cells, providing a novel treatment target.
  • Findings indicate that Ca modulates ferroptosis by affecting reactive oxygen species (ROS) and glutathione (GSH) levels in various cancer and normal cells, with potential applications for plant-derived compounds as effective anticancer treatments.
View Article and Find Full Text PDF

Foliar application of nitrates limits lead uptake by Cucumis sativus L. plants.

J Trace Elem Med Biol

January 2025

Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland.

Lead is a toxic heavy metal, which accumulates in the soil and is readily absorbed by plant roots. The uptake of toxic elements by crops is a serious threat to human health. For this reason, it is important to prevent the incorporation of heavy metals into the food chain.

View Article and Find Full Text PDF

Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar.

View Article and Find Full Text PDF

Cytotoxic ROS-Consuming Mn(III) Synzymes: Structural Influence on Their Mechanism of Action.

Int J Mol Sci

December 2024

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.

ROS (i.e., reactive oxygen species) scavenging is a key function of various Mn-based enzymes, including superoxide dismutases (SODs) and catalases, which are actively linked to oxidative stress-related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!