Previous investigations on the causal neural mechanisms underlying intertemporal decision making focused on the dorsolateral prefrontal cortex as neural substrate of cognitive control. However, little is known, about the causal contributions of further parts of the frontoparietal control network to delaying gratification, including the pre-supplementary motor area (pre-SMA) and posterior parietal cortex (PPC). Conflicting previous evidence related pre-SMA and PPC either to evidence accumulation processes, choice biases, or response caution. To disentangle between these alternatives, we combined drift diffusion models of decision making with online transcranial magnetic stimulation (TMS) over pre-SMA and PPC during an intertemporal decision task. While we observed no robust effects of PPC TMS, perturbation of pre-SMA activity reduced preferences for larger over smaller rewards. A drift diffusion model of decision making suggests that pre-SMA increases the weight assigned to reward magnitudes during the evidence accumulation process without affecting choice biases or response caution. Taken together, the current findings reveal the computational role of the pre-SMA in value-based decision making, showing that pre-SMA promotes choices of larger, costly rewards by strengthening the sensitivity to reward magnitudes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2024.120838DOI Listing

Publication Analysis

Top Keywords

decision making
16
pre-supplementary motor
8
motor area
8
intertemporal decision
8
pre-sma ppc
8
evidence accumulation
8
choice biases
8
biases response
8
response caution
8
drift diffusion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!