Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The distribution and transmission of antibiotic resistance genes (ARGs) in agricultural soils constitute a significant threat to food safety and human health. Natural quorum sensing inhibitors (QSIs), with advantages such as low plant toxicity and low application costs, present a potential approach for mitigating ARG contamination by targeting bacterial quorum sensing systems. This study explored the impacts and mechanisms of three natural QSIs (vanillin, catechin, and tannin) on the abundance of tetracycline resistance genes (TRGs) in both rhizosphere and non-rhizosphere soils. Results illustrated a notable reduction in TRG abundance across three natural QSI treatments, with catechin displaying the most pronounced effect in the rhizosphere soil. Furthermore, the application of natural QSIs had a significant influence on the bacterial community structure and population dynamics, particularly evident in the alterations induced by catechin on bacterial interactions within the soil ecosystem. Natural QSIs inhibited the production of N-acyl homoserine lactone (AHL) signaling molecules. The primary environmental factors driving changes in bacterial community were identified as pH and NO-N content. Through mechanisms involving the modulations of AHL concentrations and soil environmental factors, natural QSIs were found to impact bacterial population, ultimately leading to a decrease in TRG abundance. Importantly, the application of natural QSIs did not exhibit adverse effects on plant phenotypic traits. These findings serve as a useful reference for implementing natural QSIs to effectively control soil ARG contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175982 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!